acosA+bcosB+ccosC=?
Answers
Answered by
1
Answer:
acosA+bcosB+ccosC=2asinBsinC
Step-by-step explanation:
From sine law,
a/sin A = b/sin B = c/sin C = k
⇒a= k sinA ,b= k sinB ,c= k sinC ........(i)
Now,
L.H.S.=acosA+bcosB+ccosC
=ksinAcosA+ksinBcosB+ksinCcosC
=k/2[2sinAcosA+2sinBcosB+2sinCcosC]
=k/2[sin2A+sin2B+sin2C]
Now, consider any triangle ABC:
sin2A+sin2B+sin2C=4sinAsinBsinC......[form (i)]
⇒k/2[sin2A+sin2B+sin2C] = k/2[4sinAsinBsinC]
=2ksinAsinBsinC
=2asinBsinC=R.H.S.
Similar questions