acosX+bsinX=m and asinX-bcosX=n then prove that a²+b²=m²+n² meritnation.com
Answers
Answered by
10
Hi ,
****************************************
We know the trigonometric identity
Sin²A + cos² A = 1
*******"***********************************
acos X + bsinX = m -----( 1 )
asinX - bcosX = n -------( 2 )
Do the square of equations ( 1 )
and ( 2) ,
And add resulting equations
a² cos² x+b² sin²x+2abcosxsinx +
a²sin² x + b² cos²x -2abcosxsinx
= m² + n²
a² (cos² x + sin² x ) + b² (sin² x + cos² x ) = m² + n²
( From above Trigonometric identity )
a² + b² = m² + n²
Hence proved .
I hope this helps you.
:)
****************************************
We know the trigonometric identity
Sin²A + cos² A = 1
*******"***********************************
acos X + bsinX = m -----( 1 )
asinX - bcosX = n -------( 2 )
Do the square of equations ( 1 )
and ( 2) ,
And add resulting equations
a² cos² x+b² sin²x+2abcosxsinx +
a²sin² x + b² cos²x -2abcosxsinx
= m² + n²
a² (cos² x + sin² x ) + b² (sin² x + cos² x ) = m² + n²
( From above Trigonometric identity )
a² + b² = m² + n²
Hence proved .
I hope this helps you.
:)
Answered by
0
Answer:
the above answer is correct
Similar questions