Math, asked by AryanNigam6, 1 year ago

acosX+bsinX=m and asinX-bcosX=n then prove that a²+b²=m²+n² meritnation.com

Answers

Answered by mysticd
10
Hi ,

****************************************

We know the trigonometric identity

Sin²A + cos² A = 1

*******"***********************************

acos X + bsinX = m -----( 1 )

asinX - bcosX = n -------( 2 )

Do the square of equations ( 1 )

and ( 2) ,

And add resulting equations

a² cos² x+b² sin²x+2abcosxsinx +

a²sin² x + b² cos²x -2abcosxsinx

= m² + n²

a² (cos² x + sin² x ) + b² (sin² x + cos² x ) = m² + n²

( From above Trigonometric identity )

a² + b² = m² + n²

Hence proved .

I hope this helps you.

:)

Answered by YashElite13
0

Answer:

the above answer is correct

Similar questions