Math, asked by biancadavid1219, 1 year ago

activity 9 finding the roots of polynomial equations
find all real roots of the following equations. Next, write each polynomial on the left side of the equation in factored form. show your complete solutions

1. x^3-10x^2+32x-32=0
2. x^3-6x^2+11x-6=0
3.x^3-2x^2+4x-8=0
4.3x^3-19x^2+33x-9=0
5. x^4-5x^2+4=0

Answers

Answered by amitnrw
101

Answer:

x³ -10x² + 32x - 32 = (x - 4)²(x-2)

x³ -6x² + 11x - 6 = (x - 1)(x-2)(x-3)

x³ - 2x² + 4x - 8 =  (x - 2)(x² + 4)

3x³ - 19x² + 33x - 9 =  (3x - 1)(x - 3)²

x⁴ - 5x² + 4 =  (x + 1)(x - 1) (x + 2)(x - 2)

Step-by-step explanation:

x³ -10x² + 32x - 32 = 0

=> x³ - 2x² - 8x² + 16x + 16x - 32 = 0

=> x²(x - 2) - 8x(x - 2) + 16(x - 2) = 0

=> (x² - 8x + 16)(x-2) = 0

=> (x - 4)²(x-2) = 0

x = 2 , 4 , 4

x³ -10x² + 32x - 32 = (x - 4)²(x-2)

x³ -6x² + 11x - 6 = 0

=> x³ -x²  -5x² + 5x + 6x - 6 = 0

=> x²(x - 1) - 5x(x - 1) + 6(x - 1) = 0

=> (x - 1)(x² - 5x + 6) = 0

=> (x - 1) (x² - 2x - 3x + 6) = 0

=> (x - 1)(x-2)(x-3) = 0

x = 1 , 2 , 3

x³ -6x² + 11x - 6 = (x - 1)(x-2)(x-3)

x³ - 2x² + 4x - 8 = 0

=>x²(x - 2) + 4(x - 2) = 0

=> (x - 2)(x² + 4) = 0

x = 2

x³ - 2x² + 4x - 8 =  (x - 2)(x² + 4)

3x³ - 19x² + 33x - 9 = 0

=> 3x³ - x² - 18x² + 6x + 27x - 9 = 0

=> x²(3x - 1) - 6x(3x - 1) + 9(3x - 1) = 0

=> (3x-1)(x² - 6x + 9) = 0

=> (3x - 1)(x - 3)² = 0

x = 1/3 , 3

3x³ - 19x² + 33x - 9 =  (3x - 1)(x - 3)²

x⁴ - 5x² + 4 = 0

=> x⁴ - x² - 4x² + 4 = 0

=> x²(x² - 1) - 4(x²- 1) = 0

=> (x² - 1)(x² - 4) = 0

=> (x + 1)(x - 1) (x + 2)(x - 2) = 0

x = 1 , 2 , - 1 , -1

x⁴ - 5x² + 4 =  (x + 1)(x - 1) (x + 2)(x - 2)

Similar questions