Math, asked by Nodime, 1 year ago

AD=(8x-7)cm,DB=(5x-3)cm,AE=(4x-3)cm and EC=(3x-1)cm,find the value of x​

Answers

Answered by ᏞovingHeart
48

\tt AD = (8x - 7) cm,\; DB=(5x - 3) cm, \; AE=(4x - 3)cm \\ \tt \;and\; EC= (3x -1)cm, \;find \;the\; value\; of\; x.

\Large{\underbrace{\red{\sf Required \; Solution:}}}

\frak{\red{Given:}} \begin{cases} \orange{\sf AD = 8x - 7} \\ \orange{\sf DB = 5x - 3 }\\ \orange{\sf AER = 4x - 3} \\ \orange{ \sf EC = 3x -1} \end{cases}

\textsf {Required  to  find x}

  • By using Thαles Theorem, [ As DE ∥ BC]

       \longmapsto \sf \dfrac{AD}{BD} = \dfrac{AE}{CE}

       \longmapsto \sf \dfrac{(8x-7)}{ (5x-3)} = \dfrac{ (4x-3)}{ (3x-1)}

       \longmapsto  \sf (8x- 7)(3x - 1) = (5x - 3)(4x - 3)

       \longmapsto \sf  24x^2 - 29x + 7 = 20x^2 - 27x + 9

       \longmapsto\sf 4x^2 - 2x - 2 = 0

       \longmapsto \sf 2(2x^2 - x - 1) = 0

       \longmapsto \sf 2x^2 - x - 1 = 0

       \longmapsto \sf 2x^2 - 2x + x - 1 = 0

       \longmapsto \sf 2x(x - 1) + 1(x - 1) = 0

       \longmapsto \sf{ (x - 1)(2x + 1) = 0}

       \Longrightarrow \sf x = 1 \; or \; x = \dfrac{-1}{2}

We know thαt the side of triαngle can never be negαtive. Therefore, we tαke the positive vαlue.

\boxed{\orange{\sf{\therefore \; x = 1}}}

_____________

Hope it elps! :)

Similar questions