Math, asked by neha76332, 11 months ago

AD and BC are equal perpendiculars to a line segment AB (see figure). Show that CD bisects AB.​

Attachments:

Answers

Answered by Anonymous
35

⠀⠀ıllıllı uoᴉʇnloS ıllıllı

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

In ∆BOC and ∆AOD, We have:

∠BOC = ∠AOD

BC = AD [Given]

∠BOC = ∠AOD [Vertically opposite angles]

∴ ∆OBC ≅ ∆OAD [By AAS congruency]

➠ OB = OA [By C.P.C.T.]

i.e., O is the mid-point of AB.

  • Thus, CD bisects AB.

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Answered by pastimeplays
10

Answer:

Here, we can say that

∠BOC = ∠AOD                           [Vertically Opposite Angles]

∠OBC = ∠OAD = 90°

AD = BC                                [Given]

∴ΔBOC ≅ ΔAOD

So, OB = OA             (C.P.C.T)

Similar questions