AD is a diameter of circle ABCDE . Angle BAC=22° & angle ADC=60°. AE and ED are parallel lines. Find the values of w, x,y,and z
Answers
hope this answer helpful u
Given: D = diameter, angle BAC=22, angle ADC = 60, AE and ED are parallel lines.
To find: values of x, y, z, w.
Solution:
(lets mark centre ad O)
- Now, since AD is diameter,
- In triangle ACD,
ang A+ ang C + ang D = 180
w+90 + 60 = 180
(if diameter is one of the side of a triangle, then the triangle is right angle triangle)
- So,
w=30.
- Now, 22 + w = z ........(alternate interior angles)
22 + 30 = z
z = 52.
- Now, lets do a construction, join AE,
- So ang ABE = ang ADE ......(angle subtended by a chord is equal)
x + y = 52 ........(alternate interior angles)
- Now in triangle EOD,
ang E + ang D + ang O = 180
angle O = 76
ang EAD = 76/2= 38 = ang ECD
- (angle subtended by a chord is equal)
- Now in triangle ECD,
ang E + ang C + ang D = 180
y + 60+ 52+ 38 = 180
y = 30
- Now, x + y = 52
x= 52 - y
x= 22
Answer:
- Hence, x= 22, y = 30, z = 52, w=30.