AD is a median of a triangle ABC and AM is perpendicular to BC. prove that AC²=AD²+BC*DM+1/4BC².
Answers
Answered by
13
In right ΔAMC, AC2 = AM2 + CM2 [By Pythagoras theorem] → (1)
In right ΔAMD, AD2 = AM2 + DM2 [By Pythagoras theorem]
⇒ AM2 = AD2 – DM2
Hence equation (1) becomes,
AC2 = [AD2 – DM2 ] + CM2
= AD2 – DM2 + (DC + DM)2
= AD2 – DM2 + DC2 + 2 (DC)(DM) + DM2
= AD2 + DC2 + 2 (DC)(DM)
= AD2 + (BC/2)2 + 2 (BC/2)(DM)
∴ AC2 = AD2 + (BC/2)2 + (BC)(DM)
In right ΔAMD, AD2 = AM2 + DM2 [By Pythagoras theorem]
⇒ AM2 = AD2 – DM2
Hence equation (1) becomes,
AC2 = [AD2 – DM2 ] + CM2
= AD2 – DM2 + (DC + DM)2
= AD2 – DM2 + DC2 + 2 (DC)(DM) + DM2
= AD2 + DC2 + 2 (DC)(DM)
= AD2 + (BC/2)2 + 2 (BC/2)(DM)
∴ AC2 = AD2 + (BC/2)2 + (BC)(DM)
Attachments:
Similar questions
Chemistry,
7 months ago
Chemistry,
7 months ago
Political Science,
7 months ago
Math,
1 year ago
English,
1 year ago
English,
1 year ago
Social Sciences,
1 year ago