AD is the mid point of side BC in triangle ABC then prove that AB²+AC²=2(AD+BD)²
Answers
Answered by
3
hope this will help you ☺
Attachments:
greeshmasweety:
mark as brainlist plzzzz
Answered by
6
Given:- AD is median. So BD = DC
Construction:- Draw AE⊥ BC
To prove:- AB2 + AC2 = 2 (AD2 + BD2)
Proof:- In ∆AED
By Pythagoras theorem
AD² = AE² + DE²
AE² = AD² - DE² ...... (1)
In ∆AED
By Pythagoras theorem
AD² = AE² + DE²
AE² = AD² - DE² ....... (2)
In ∆AEB
By Pythagoras theorem
AB² = AE² + BE²
AB² = AD² - DE² + BE² [From (2)]
Now BE = DE + BD
= (DE + BD)² + AD² - DE²
= DE² + BD² + 2DE. BD + AD² - DE²
AB² = BD² + AD² + 2DE. BD ....... (3)
In ∆AEC
AC² = AE² + EC²
= AD² - DE² + EC² [From (1)]
= AD² - DE² + (DC - DE)²
= AD² - DE² + DC² + DE² - 2DC. DE
= AD² + DC² - 2DC. DE
But BD = DC
So,
AC² = AD² + BD² - 2BD. DE ........ (4)
Add eq. (3) and (4)
AB² + AC² = BD² + AD² + AD² + BD² + 2DE. BD - 2BD. DE
AB² + AC² = BD² + AD² + AD² + BD² + 2BD. DE - 2BD. DE
AB² + AC² = 2AD² + 2BD²
AB² + AC² = 2(AD² + BD²)
Hence proved....
====================================
Attachments:
Similar questions