Math, asked by LovelyMaheshani, 1 year ago

Add: (2√3-5√2)+(√3+2√2)

Answers

Answered by harendrachoubay
180

(2\sqrt{3}-5\sqrt{2})+(\sqrt{3}+2\sqrt{2})=3(\sqrt{3}-\sqrt{2})

Step-by-step explanation:

We have,

(2\sqrt{3}-5\sqrt{2})+(\sqrt{3}+2\sqrt{2})

To add, (2\sqrt{3}-5\sqrt{2})+(\sqrt{3}+2\sqrt{2})=?

(2\sqrt{3}-5\sqrt{2})+(\sqrt{3}+2\sqrt{2})

=2\sqrt{3}-5\sqrt{2}+\sqrt{3}+2\sqrt{2}

=(2\sqrt{3}+\sqrt{3})+(-5\sqrt{2}+2\sqrt{2})

=3\sqrt{3}-3\sqrt{2}

Taking 3 as common, we get

=3(\sqrt{3}-\sqrt{2})

The addition of (2\sqrt{3}-5\sqrt{2})+(\sqrt{3}+2\sqrt{2})=3(\sqrt{3}-\sqrt{2})

Hence, (2\sqrt{3}-5\sqrt{2})+(\sqrt{3}+2\sqrt{2})=3(\sqrt{3}-\sqrt{2})

Answered by sohannegi120
10

Answer:

(2\sqrt{3}-5\sqrt{2})+(\sqrt{3}+2\sqrt{2})(2

3

−5

2

)+(

3

+2

2

) =3(\sqrt{3}-\sqrt{2})=3(

3

2

)

Step-by-step explanation:

We have,

(2\sqrt{3}-5\sqrt{2})+(\sqrt{3}+2\sqrt{2})(2

3

−5

2

)+(

3

+2

2

)

To add, (2\sqrt{3}-5\sqrt{2})+(\sqrt{3}+2\sqrt{2})=?(2

3

−5

2

)+(

3

+2

2

)=?

∴ (2\sqrt{3}-5\sqrt{2})+(\sqrt{3}+2\sqrt{2})(2

3

−5

2

)+(

3

+2

2

)

=2\sqrt{3}-5\sqrt{2}+\sqrt{3}+2\sqrt{2}=2

3

−5

2

+

3

+2

2

=(2\sqrt{3}+\sqrt{3})+(-5\sqrt{2}+2\sqrt{2})=(2

3

+

3

)+(−5

2

+2

2

)

=3\sqrt{3}-3\sqrt{2}=3

3

−3

2

Taking 3 as common, we get

=3(\sqrt{3}-\sqrt{2})=3(

3

2

)

The addition of (2\sqrt{3}-5\sqrt{2})+(\sqrt{3}+2\sqrt{2})(2

3

−5

2

)+(

3

+2

2

) =3(\sqrt{3}-\sqrt{2})=3(

3

2

)

Hence, (2\sqrt{3}-5\sqrt{2})+(\sqrt{3}+2\sqrt{2})(2

3

−5

2

)+(

3

+2

2

) =3(\sqrt{3}-\sqrt{2})=3(

3

2

)

Similar questions