Math, asked by mayankbhanushap4n8pz, 1 year ago

Add 7+10*1/2+14+....+84.

Answers

Answered by Ragib11
9
Clearly it is an A.P.

Here, a=7 ,d=7/2 , an=84 , Sn=?

We know that,

an = a+(n-1)d

84 = 7+(7/2n) -7/2

77+7/2 = 7/2n

154-7/2 =7/2n

n = 21

Sn= n/2 [a+an]

Sn= (21/2) * 91

Sn= 1911 / 2

So, the sum of 7+21/2+14+.............+84 is 1911/2

Answered by legendofduke
5

Answer:

GIVEN:−

\large\tt\purple{a=7}a=7

\large\tt\purple{d=10\frac{1}{2}-7=\frac{21}{2}-7=\frac{7}{2}}d=10

2

1

−7=

2

21

−7=

2

7

\small\sf\underline\pink{Let\:the\:nth\:term\:of\:the\:AP\:is\:84}

LetthenthtermoftheAPis84

\therefore∴ \large\tt\orange{an=84}an=84

\longrightarrow⟶ \large\tt\orange{a+(n-1)d=84}a+(n−1)d=84

\longrightarrow⟶ \large\tt\orange{7+(n-1)( \frac{7}{2} )=84}7+(n−1)(

2

7

)=84

\longrightarrow⟶ \large\tt\orange{(n-1)(\frac{7}{2)}=77}(n−1)(

2)

7

=77

\longrightarrow⟶ \large\tt\orange{n-1=22}n−1=22

\longrightarrow⟶ \large\tt\orange{n=23}n=23

\small\sf\underline\pink{The\:sum\:of\:n\:terms\:of\:an\:AP\:is\:given\:by}

ThesumofntermsofanAPisgivenby

\longrightarrow⟶ \large\tt\gray{Sn=\frac{n}{2}(a+l)}Sn=

2

n

(a+l)

\longrightarrow⟶ \large\tt\gray{\frac{23}{2}(7+84)}

2

23

(7+84)

\longrightarrow⟶ \large\tt\gray{S23=\frac{23}{2}(91)}S23=

2

23

(91)

\longrightarrow⟶ \large\tt\gray{S23=\frac{2093}{2}=1046\frac{1}{2}}S23=

2

2093

=1046

2

1

Similar questions