addition and subtraction formulae of trigonometry
Answers
Answered by
8
Answer:
Formulae are as follows:
Sine of sum of angles:
\sin (A+B) = \sin A . \cos B + \cos A . \sin B
Cosine of sum of angles:
\cos (A+B) = \cos A . \cos B - \sin A . \sin B
Sine of difference of angles:
\sin (A-B) = \sin A . \cos B - \cos A . \sin B
Cosine of difference of angles:
\cos (A-B) = \cos A . \cos B + \sin A . \sin B
And similarly the sum and difference of angle formula of Tangent are:
\tan (A+B) = \dfrac{\tan A + \tan B}{1 - \tan A . \tan B}
and,
\tan (A-B) = \dfrac{\tan A - \tan B}{1 + \tan A . \tan B}
Attachments:
Answered by
2
Answer:
sinα = a/c, cosα = b/c.
sin(90° - α) = cosα and cos(90° - α) = sinα,
sin(α + β) = sinα cos β + cos α sin β.
cos(α + β) = cosα cos β - sin α sin β.
sin(α - β) = sinα cos β - cos α sin β.
cos(α - β) = cosα cos β + sin α sin β
Similar questions