adult education includes political as well as civic and moral
Answers
Explanation:
Answer:
\huge{\underline{\underline{Given→}}}
Given→
\sf\green{Length\:of\:rectangel=x+2\:units}Lengthofrectangel=x+2units
\sf\green{Breadth\:of\:rectangel=2x\:units}Breadthofrectangel=2xunits
\huge{\underline{\underline{To\:Find→}}}
ToFind→
\sf\purple{Perimeter\:of\:the\:rectangle}Perimeteroftherectangle
\sf\color{purple}{Area\:of\:the\:rectangle}Areaoftherectangle
\huge{\underline{\underline{Answer→}}}
Answer→
Perimeter:-
As perimeter =2(Lenght+Breadth)
\sf\blue{→P=2(l+b)}→P=2(l+b)
\sf\blue{→P=2(2x+x+2)}→P=2(2x+x+2)
\sf\blue{→P=4x+2x+4}→P=4x+2x+4
\sf\blue{→P=6x+4}→P=6x+4
\mathrm{\boxed{\boxed{\pink{→P=6x+4✔}}}}
→P=6x+4✔
Area:-
As area =Length x Breadth
\sf\color{blue}{→Ar=l\times b}→Ar=l×b
\sf\color{blue}{→Ar=2x\times (x+2)}→Ar=2x×(x+2)
\sf\color{blue}{→Ar=2x(x+2)}→Ar=2x(x+2)
\sf\color{blue}{→Ar=2x^2+4x}→Ar=2x
2
+4x
{\boxed{\boxed{\pink{→Ar=2x^2+4x✔}}}}
→Ar=2x
2
+4x✔
☞ Hence the Perimeter of the rectangle is 6x+4 units and it's area is \mathrm{2x^2+4x}2x
2
+4x units which is the required answer.
HOPE IT HELPS.
y