World Languages, asked by danishlone53789, 5 months ago

adult education includes political as well as civic and moral​

Answers

Answered by Anonymous
1

Explanation:

Answer:

\huge{\underline{\underline{Given→}}}

Given→

\sf\green{Length\:of\:rectangel=x+2\:units}Lengthofrectangel=x+2units

\sf\green{Breadth\:of\:rectangel=2x\:units}Breadthofrectangel=2xunits

\huge{\underline{\underline{To\:Find→}}}

ToFind→

\sf\purple{Perimeter\:of\:the\:rectangle}Perimeteroftherectangle

\sf\color{purple}{Area\:of\:the\:rectangle}Areaoftherectangle

\huge{\underline{\underline{Answer→}}}

Answer→

Perimeter:-

As perimeter =2(Lenght+Breadth)

\sf\blue{→P=2(l+b)}→P=2(l+b)

\sf\blue{→P=2(2x+x+2)}→P=2(2x+x+2)

\sf\blue{→P=4x+2x+4}→P=4x+2x+4

\sf\blue{→P=6x+4}→P=6x+4

\mathrm{\boxed{\boxed{\pink{→P=6x+4✔}}}}

→P=6x+4✔

Area:-

As area =Length x Breadth

\sf\color{blue}{→Ar=l\times b}→Ar=l×b

\sf\color{blue}{→Ar=2x\times (x+2)}→Ar=2x×(x+2)

\sf\color{blue}{→Ar=2x(x+2)}→Ar=2x(x+2)

\sf\color{blue}{→Ar=2x^2+4x}→Ar=2x

2

+4x

{\boxed{\boxed{\pink{→Ar=2x^2+4x✔}}}}

→Ar=2x

2

+4x✔

☞ Hence the Perimeter of the rectangle is 6x+4 units and it's area is \mathrm{2x^2+4x}2x

2

+4x units which is the required answer.

HOPE IT HELPS.

y

Similar questions