Aeroplane left 30 minutes later than its scheduled time and in order to reach destination 1500 km away in time, it has to increase its speed by 250 km/h from its usual speed. determine its usual speed.
Answers
Answered by
19
Solution :-
Let the original speed of train be x km/hr
New speed = (x + 250) km/hr
We know that,
Time = Distance / Speed
Given : A plane left 30 minutes or 1/2 hours later than the scheduled time.
According to the question,
=> 1500/x - 1500/(x + 250) = 1/2
=> (1500x + 37500 - 1500x)/x(x + 250) = 1/2
=> 2(37500) = x(x + 250)
=> 75000 = x² + 250x
=> x² + 250x - 75000 = 0
=> x² + 1000x - 750x - 75000 = 0
=> x(x + 1000) - 750(x + 1000) = 0
=> (x - 750) (x + 1000) = 0
=> x = 750 or x = - 1000
∴ x ≠ - 1000 (Because speed can't be negative)
Hence,
Its usual speed = 750 km/hr
Let the original speed of train be x km/hr
New speed = (x + 250) km/hr
We know that,
Time = Distance / Speed
Given : A plane left 30 minutes or 1/2 hours later than the scheduled time.
According to the question,
=> 1500/x - 1500/(x + 250) = 1/2
=> (1500x + 37500 - 1500x)/x(x + 250) = 1/2
=> 2(37500) = x(x + 250)
=> 75000 = x² + 250x
=> x² + 250x - 75000 = 0
=> x² + 1000x - 750x - 75000 = 0
=> x(x + 1000) - 750(x + 1000) = 0
=> (x - 750) (x + 1000) = 0
=> x = 750 or x = - 1000
∴ x ≠ - 1000 (Because speed can't be negative)
Hence,
Its usual speed = 750 km/hr
Answered by
6
ANSWER:-
Let the usual speed of the aeroplane = x km/h
Then it's increased speed = (x+250)km/h
Time difference in the two cases = 30 min. = 1/2 hr.
As the speed cannot be negative, x ≠ -1000 ,so x = 750
Hence, the usual speed of the aeroplane = 750km/h
Similar questions
Science,
8 months ago
English,
8 months ago
Physics,
1 year ago
Biology,
1 year ago
Social Sciences,
1 year ago