Math, asked by Eshal5883, 1 year ago

Aeroplane left 30 minutes later than its scheduled time and in order to reach destination 1500 km away in time, it has to increase its speed by 250 km/h from its usual speed. determine its usual speed.

Answers

Answered by TheBrainliestUser
19
Solution :-

Let the original speed of train be x km/hr
New speed = (x + 250) km/hr

We know that,
Time = Distance / Speed

Given : A plane left 30 minutes or 1/2 hours later than the scheduled time.

According to the question,

=> 1500/x - 1500/(x + 250) = 1/2
=> (1500x + 37500 - 1500x)/x(x + 250) = 1/2
=> 2(37500) = x(x + 250)
=> 75000 = x² + 250x
=> x² + 250x - 75000 = 0
=> x² + 1000x - 750x - 75000 = 0
=> x(x + 1000) - 750(x + 1000) = 0
=> (x - 750) (x + 1000) = 0
=> x = 750 or x = - 1000

∴ x ≠ - 1000 (Because speed can't be negative)


Hence,
Its usual speed = 750 km/hr
Answered by VelvetBlush
6

ANSWER:-

Let the usual speed of the aeroplane = x km/h

Then it's increased speed = (x+250)km/h

Time difference in the two cases = 30 min. = 1/2 hr.

 \sf\red{\frac{1500}{x}  -  \frac{1500}{x + 250}  =   \frac{1}{2}  }

\longrightarrow\sf\red{2 \times 1500((x + 250) - x) = x(x + 250)}

\longrightarrow \sf\red{{x}^{2}  + 250x - 750000 = 0}

\longrightarrow\sf\red{(x - 750)(x + 1000) = 0}

\longrightarrow\sf\red{x = 750 \: or \: x =  - 1000}

As the speed cannot be negative, x ≠ -1000 ,so x = 750

Hence, the usual speed of the aeroplane = 750km/h

Similar questions