Math, asked by snehackr276, 11 months ago

af(tanx)+bf(cotx)=x then f'(cotx)

Answers

Answered by slicergiza
16

Answer:

f'(cotx)=\frac{af'(tanx)sec^2x-1}{bcosec^2x}

Step-by-step explanation:

Given,

af(tanx)+bf(cotx)=x,

Differentiating with respect to x,

\frac{d}{dx}(af(tanx)+bf(cotx)) = \frac{d}{dx}(x)

af'(tanx)\frac{d}{dx}(tan x)+b'f(cotx)\frac{d}{dx}(cot x)=1

( by Chain rule )

af'(tanx)sec^2x+b'f(cotx)\times -cosec^2x=1

af'(tanx)sec^2x-b'f(cotx)cosec^2x=1

bf'(cotx)cosec^2x=af'(tanx)sec^2x-1

f'(cotx)=\frac{af'(tanx)sec^2x-1}{bcosec^2x}

Similar questions