after giving two successive discounts each of X percentage on the Marked price of an article total discount is rupees 259.20 if the Marked price of the article is 720 then the value of x is
Answers
Answer:
20
Step-by-step explanation:
Given
Marked price of the article = 720 Rs.
Discount = x%
The first discount on the marked price =
New price of the article =
Second time discount will be on this new price
Thus the new discount price =
Total Discount =
=
=
But given that total discount = 259.20 Rs.
∴
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
But x is a percentage, therefore it cannot be greater than 100
∴ x = 20
Step-by-step explanation:
20
Step-by-step explanation:
Given
Marked price of the article = 720 Rs.
Discount = x%
The first discount on the marked price = 720\times\frac{x}{100}720×
100
x
New price of the article = 720-720\times\frac{x}{100}=720(1-\frac{x}{100} )720−720×
100
x
=720(1−
100
x
)
Second time discount will be on this new price
Thus the new discount price = 720(1-\frac{x}{100} )(\frac{x}{100} )720(1−
100
x
)(
100
x
)
Total Discount = 720(1-\frac{x}{100} )(\frac{x}{100} )+720\times\frac{x}{100}720(1−
100
x
)(
100
x
)+720×
100
x
= 720(\frac{x}{100} )(1-\frac{x}{100} +1)720(
100
x
)(1−
100
x
+1)
= 720(\frac{x}{100} )(2-\frac{x}{100})720(
100
x
)(2−
100
x
)
But given that total discount = 259.20 Rs.
∴ 720(\frac{x}{100} )(2-\frac{x}{100})=259.20720(
100
x
)(2−
100
x
)=259.20
⇒ (\frac{x}{100} )(2-\frac{x}{100})=\frac{259.20}{720}(
100
x
)(2−
100
x
)=
720
259.20
⇒ (\frac{x}{100} )(2-\frac{x}{100})=0.36(
100
x
)(2−
100
x
)=0.36
⇒ (\frac{2x}{100} -\frac{x^{2}}{10000})=0.36(
100
2x
−
10000
x
2
)=0.36
⇒ 200x-x^{2}=3600200x−x
2
=3600
⇒ x^{2}-200x+3600=0x
2
−200x+3600=0
⇒ x^{2}-180x-20x+3600=0x
2
−180x−20x+3600=0
⇒ x(x-180)-20(x-180)=0x(x−180)−20(x−180)=0
⇒ (x-180)(x-20)=0(x−180)(x−20)=0
⇒ x=180, 20x=180,20
But x is a percentage, therefore it cannot be greater than 100
∴ x = 20