Math, asked by varshachebolu, 10 months ago

Ages of A and B are in the ratio of 5:4. After 5years the sum of ages becomes 100. Find ages of A and B.

Answers

Answered by sofiya697
1

Answer:

Given

A:B =5:4

Let A=5x

B=4x

(A+5)+(B+5)=100

A+B+10=100

A+B=100-10

A+B=90

5x+4x=90

9x=90

x= 90/9

x=10

A= 5x =5×10= 50

B= 4x =4×10= 40

Answered by Anonymous
71

AnswEr :

\normalsize\bullet\:\sf\ Let \: the \: present \: age \: of \: A \: be \: 5x \: years

\normalsize\bullet\:\sf\ Let \: the \: present \: age \: of \: B \: be \: 4x \: years

\underline{\dag\:\textsf{According \: to \: the \: question \: now:}}

\underline\textsf{After \: 5 \: years:}

\normalsize\ : \implies\sf\ (Age \: of \: A + 5) + (Age \: of \: B + 5) = 100 \\ \\ \normalsize\ : \implies\sf\ (5x + 5) + (4x + 5) = 100 \\ \\ \normalsize\ : \implies\sf\ 9x + 10  = 100 \\ \\ \normalsize\ : \implies\sf\ 9x = 90 \\ \\ \normalsize\ : \implies\sf\ x = \frac{\cancel{90}}{\cancel{9}} \\ \\ \normalsize\ : \implies\sf\ x = 10

 \rule{100}2

\normalsize\star\:\sf\ Present \: Age \: of \: A :-

\normalsize\ : \implies\sf\ Age_{A} = 5x = 5 \times\ 10  \\ \\ \normalsize\ : \implies\sf\ Age_{A} = 50

\normalsize\ : \implies{\underline{\boxed{\sf{Present \: age \: of \: A = 50 \: years}}}}

\normalsize\star\:\sf\ Present \: Age \: of \: B :-

\normalsize\ : \implies\sf\ Age_{B} = 4x = 4 \times\ 10  \\ \\ \normalsize\ : \implies\sf\ Age_{B} = 40

\normalsize\ : \implies{\underline{\boxed{\sf{Present \: age \: of \: B = 40 \: years}}}}

Similar questions