Math, asked by nikki011, 10 months ago

PLS GET THIS DONE!

Attachments:

Answers

Answered by shadowsabers03
2

\displaystyle\longrightarrow\sf{\dfrac{1}{2}(x+y+z)\left[(x-y)^2+(y-z)^2+(z-x)^2\right]}

\displaystyle\longrightarrow\sf{\dfrac{1}{2}(x+y+z)[x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2]}

\displaystyle\longrightarrow\sf{\dfrac{1}{2}(x+y+z)[2x^2+2y^2+2z^2-2xy-2yz-2zx]}

\displaystyle\longrightarrow\sf{\dfrac{1}{2}\cdot2(x+y+z)(x^2+y^2+z^2-xy-yz-zx)}

\displaystyle\longrightarrow\sf{(x+y+z)(x^2+y^2+z^2-xy-yz-zx)}

\displaystyle\longrightarrow\sf{\underline{\underline{x^3+y^3+z^3-3xyz}}}

Answered by Anonymous
1

Step-by-step explanation:

Given :

  • 1/2 ( x + y + z ) [ (x–y)² + (y–z)² + (z–x)² ]

Solutuon:

Using ( a b )² = + + 2ab

1/2 ( x + y + z ) ( + 2xy) + ( + + 2yz ) + ( + 2zx)

1/2 ( x + y + z ) ( 2x² + 2y² + 2z² 2xy 2yz 2zx )

1/2 ( x + y + z ) 2 ( + + xy yz zx )

(1/2)2 ( x + y + z ) ( x² + y² + z² – xy – yz – zx )

( x + y + z ) ( x² + y² + z² – xy – yz – zx )

We know the formula that

\small\implies{\sf } + + 3xyz = ( x + y + z ) ( x² + y² + z² – xy – yz – zx )

Therefore, The value of given equation will be x³ + y³ + z³ – 3xyz

Similar questions