Math, asked by Nereida, 1 year ago

Ahola...!!!


Solve the following pair of linear equations by cross-multiplication method :-

2 (ax-by)+a+4b=0 ,
2 (bx+ay)+b-4a=0 .


All the best...!!!​

Answers

Answered by Superstar004
18

\huge\pink{\mid{\underline{\overline{\tt HELLO!!!}}\mid}}

_________________________

Answer is in the attachment...

________________________

HOPE IT HELPS...

Attachments:

Nereida: Oh!!!Thanks...
Superstar004: Wello !!!
Anonymous: Nice Ans dear
Nereida: tq
Answered by Anonymous
39

SOLUTION

Given,

 =  > 2(ax - by) + a + 4b = 0  \\  =  > 2(bx + ay) + b - 4a = 0 \\  =  > to \: find \: the \: solution \: of \: the \: system \: by \: the \: method \: of \: cross \: multiplication \\  =  > 2(ax - by) + a + 4b = 0 \\  =  > 2(bx + ay) + b - 4a = 0 \\  =  > after \: rewriting \: the \: equations \: we \: have \\  =  > 2ax - 2by + (a + 4b) = 0 \\  =  > 2bx + 2ay + (b - 4a) = 0 \\  \\   =  > by \: cross \: multiplication \: method \: we \: get \\  =  >  \frac{x}{(b - 4a)( - 2b) - (a + 4b)(2a)}  =  \frac{ - y}{(b - 4a)(2a) - (a + 4b)(2b)}  =  \frac{1}{4a {}^{2} + b {}^{2}  }   \\ \\  =  >  \frac{x}{( - 2b {}^{2} + 8ab) - (2a {}^{2}  + 8ab)}  =  \frac{ - y}{(2ab - 8a {}^{2}) - (2ba + 8b {}^{2}) }  =  \frac{1}{4a {}^{2} + 4b {}^{2}  }  \\  \\  =  >  \frac{x}{ - 2(b {}^{2}  + a {}^{2} )}  =  \frac{y}{8(a {}^{2}  +  {b}^{2} )}  =  \frac{1}{4a {}^{2}  + 4b {}^{2} }  \\  \\  =  >  \frac{x}{ - 2(b {}^{2}  + a {}^{2} )}  =  \frac{1}{4a {}^{2}  + b {}^{2} }  = x =  -  \frac{1}{2}  \\  =  > for \: y \: consider \: the \: following \\  =  >  \frac{y}{8( {a}^{2}  +  {b}^{2}) }  =  \frac{1}{4a {}^{2}  + 4b {}^{2} }  = y = 2 \\  \\  =  > hence \: the \: value \: of \: x \:  =  -  \frac{1}{2} \:  \: and \:  \: y = 2

Hope it helps ✔️


Anonymous: perfect ANSWERE !!
Anonymous: Excellent ams
Anonymous: Ans *
khushizzzz: awwwsome❤
Tivrta: thnx
Similar questions