Physics, asked by Anonymous, 1 year ago

❤❤Ahola❤❤
↘↘↘↘↘↘↘↘↘↘
♦ The photograph of a house occupies an area of 1.75 cm^2 on a 35 mm slide . The slide is projected on screen and the area of the house on the screen is 1.55m^2 .What is the linear magnification of project on screen ?
.
.
.
.
.
.
.
Thnks ☺☺☺☺​


Anonymous: hlo
hardy00771: hiloo
Anonymous: :&

Answers

Answered by Anonymous
20

Given:

Area of the:

(i) House = \sf{ {1.75 \: cm}^{2}}

(ii) Image of the house (on screen) = </strong><strong>\</strong><strong>sf</strong><strong>{</strong><strong> {1.55 \: m}^{2}</strong><strong>}</strong><strong> </strong><strong>

\boxed{\sf{1\:m = 100\:cm = {10}^{2}  \: cm}}

Now:

Area of the image of the house formed on the screen:

\implies \sf{1.55  \: {m}^{2}}

\implies \sf{1.55 \times (10 ^{2}  {cm})^{2}}

\implies \sf{1.55 \times  {10}^{4}  {cm}^{2}}

So:

\boxed{\sf{Arial\:magnification = \frac{Area \: of \: image}{Area \: of \: slide}} }

\implies \sf{ \frac{1.55 \times  {10}^{4} {cm}^{2}  }{ {1.75 \: cm}^{2} }}

\implies \sf{0.8857 \times  {10}^{4}}

Therefore:

Linear mag =  \sf{\sqrt{(Arial \: magnification)}}

\implies \sf{ \sqrt{(0.8857 \times  {10}^{4} )}}

\implies  \sf{0.9411 \times  {10}^{2}}

\implies \sf{94.11}

Final answer: 94.11


Anonymous: thnk u ☺
Anonymous: Welcome❤️
anchal68: wow u r really a genius
Anonymous: :)❤️
Anonymous: Perfecto..Di ^•^
Anonymous: Ty❤️
Answered by jaani281
4

 \sqrt{(arial \: magnification)}

 \sqrt{(arial \: magnification)}  \sqrt{(0.8857 \times  {10}^{4} )}

 \sqrt{(arial \: magnification)}  \sqrt{(0.8857 \times  {10}^{4} )}  0.9411 \times  {10}^{2}

 \sqrt{(arial \: magnification)}  \sqrt{(0.8857 \times  {10}^{4} )}  0.9411 \times  {10}^{2} 94.11

Similar questions