Math, asked by shiva742435, 9 months ago

aij=1÷2(3i-2j) and A=[aij]2cross 2is​

Answers

Answered by pulakmath007
8

SOLUTION

GIVEN

 \displaystyle \sf{a_{ij} =  \frac{1}{2} (3i - 2j)}

TO DETERMINE

 \sf{A =  \big[ a_{ij} \big] _{2 \times 2}}

EVALUATION

Here it is given that

 \displaystyle \sf{a_{ij} =  \frac{1}{2} (3i - 2j)}

 \displaystyle \sf{ a_{11} =  \frac{1}{2} (3 - 2) =  \frac{1}{2} }

 \displaystyle \sf{a_{12} =  \frac{1}{2} (3 - 4) =  -  \frac{1}{2} }

 \displaystyle \sf{a_{21} =  \frac{1}{2} (6 - 2) = 2}

 \displaystyle \sf{a_{22} =  \frac{1}{2} (6 - 4) = 1}

Now

 \sf{A =  \big[ a_{ij} \big] _{2 \times 2}}

  = \displaystyle\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}

  = \displaystyle\begin{pmatrix}  \frac{1}{2}  &  -  \frac{1}{2}  \\ 2 & 1 \end{pmatrix}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. A square matrix is said to be ------ if all its non diagonal elements are zero.

https://brainly.in/question/29052566

2. If [1 2 3] B = [34], then the order of the matrix B is

https://brainly.in/question/9030091

Similar questions