Physics, asked by farhanahmed123p0llz4, 9 months ago

Air is streaming past a horizontal air plane wing such that its speed isover the upper surface is 120ms and at the lower surface is 90ms . If the density of air is1.3kgm³ find the difference in pressure between the top and bottom of the wing. If the wing is 10m long and has an average width of 2m, ​

Answers

Answered by ShivamKashyap08
26

Answer:

  • Pressure Difference (ΔP) = 4095 Pascals.

Given:

  1. Velocity at upper surface (v₁) = 120 m/s.
  2. Velocity at Lower surface (v₂) = 90 m/s.
  3. Density of air (ρ) = 1.3 Kg/m³.

Explanation:

\rule{300}{1.5}

This is an Application of Bernoullis theorem.

From Bernoullis theorem we Know,

\large{\boxed{\bold{P + \dfrac{1}{2}\rho v^2 + \rho gh = Constant}}}

\bold{Here}\begin{cases} \rho \text{ denotes Density} \\ \text{v denotes Velocity} \\ \text{P denotes Pressure} \\ \text{h denotes Height} \\ \text{g denotes Acceleration due to gravity}\end{cases}

Now, the Equation becomes,

\large{\tt \hookrightarrow P_1 + \dfrac{1}{2}\rho v_1^2 + \rho gh_1 = P_2 + \dfrac{1}{2}\rho v_2^2 + \rho gh_2  }

But the Aeroplane is flying at a Same Altitude.

Therefore, h = h = h.

Substituting,

\large{\tt \hookrightarrow P_1 + \dfrac{1}{2}\rho v_1^2 + \rho gh = P_2 + \dfrac{1}{2}\rho v_2^2 + \rho gh}

\large{\tt \hookrightarrow P_1 + \dfrac{1}{2}\rho v_1^2 + \cancel{\rho gh} = P_2 + \dfrac{1}{2}\rho v_2^2 + \cancel{\rho gh}}

\large{\hookrightarrow{\underline{\underline{\tt P_1 + \dfrac{1}{2}\rho v_1^2 = P_2 + \dfrac{1}{2}\rho v_2^2 }}}}

\rule{300}{1.5}

\rule{300}{1.5}

\large{\tt \hookrightarrow P_1 + \dfrac{1}{2}\rho v_1^2  = P_2 + \dfrac{1}{2}\rho v_2^2 }

\large{\tt \hookrightarrow P_2 - P_1  = \dfrac{1}{2}\rho v_1^2 -  \dfrac{1}{2}\rho v_2^2}

Let P - P = ΔP.

\large{\tt \hookrightarrow \Delta P  = \dfrac{1}{2}\rho v_1^2 -  \dfrac{1}{2}\rho v_2^2}

\large{\tt \hookrightarrow \Delta P  = \dfrac{1}{2} \rho \bigg[v_1^2 -  v_2^2\bigg]}

Substituting the values,

\large{\tt \hookrightarrow \Delta P  = \dfrac{1}{2} \times 1.3 \times \bigg[(120)^2 -  (90)^2\bigg]}

\large{\tt \hookrightarrow \Delta P  = \dfrac{1}{2} \times 1.3 \times (14400 -  8100)}

\large{\tt \hookrightarrow \Delta P  = \dfrac{1}{2} \times 1.3 \times (6300)}

\large{\tt \hookrightarrow \Delta P  = \dfrac{1}{\cancel{2}} \times 1.3 \times \cancel{6300}}

\large{\tt \hookrightarrow \Delta P = 1 \times 1.3 \times 3150}

\large{\tt \hookrightarrow \Delta P = 1 \times 13 \times 315}

\large{\tt \hookrightarrow \Delta P = 1 \times 4095}

\huge{\boxed{\boxed{\tt \Delta P = 4095 \: Pa}}}

The Pressure Difference is 4095 Pascals.

\rule{300}{1.5}

Similar questions