Math, asked by pravinparmar96, 6 months ago

All subsequences of a convergent sequence of real numbers convergent to the same limit​

Answers

Answered by aryanayak2205
0

Answer:

Theorem 3.4 If a sequence converges then all subsequences converge and all convergent subsequences converge to the same limit. Proof Let {an}n∈N be any convergent sequence. ... Let {bn}n∈N be any subsequence

Answered by payalchatterje
0

Let s_{n_k} denote a subsequence of s_n.

Note that n_k \geqslant k

for all k. This easy to prove by induction: in fact, n_1 \geqslant 1 and n_k \geqslant k implies n_{k + 1} > n_k \geqslant k and hence n_{k + 1} \geqslant k + 1

Let lim \: s_n = s

and let  \epsilon > 0

There exists N so that

n > N implies   |s_n - s|  < N  \epsilon.

Now k > N

n_k > N

 |s_{n_k} - s|  <  \epsilon

Therefore: lim \: s_{n_k} = s

Where k tends to ∞.

Therefore,all subsequences of a convergent sequence of real numbers convergent to the same limit.

This is a problem of Algebra.

Some important Algebra formulas.

(a + b)² = a² + 2ab + b²

(a − b)² = a² − 2ab − b²

(a + b)³ = a³ + 3a²b + 3ab² + b³

(a - b)³ = a³ - 3a²b + 3ab² - b³

a³ + b³ = (a + b)³ − 3ab(a + b)

a³ - b³ = (a -b)³ + 3ab(a - b)

a² − b² = (a + b)(a − b)

a² + b² = (a + b)² − 2ab

a² + b² = (a − b)² + 2ab

a³ − b³ = (a − b)(a² + ab + b²)

a³ + b³ = (a + b)(a² − ab + b²)

Know more about Algebra,

1) https://brainly.in/question/13024124

2) https://brainly.in/question/1169549

Similar questions