Math, asked by KaranKing6671, 10 months ago

All the points in the set S = {(α + i)/(α - i) : α ∈ R} (i = √(-1) lie on a:
(A) straight line whose slope is 1 (B) circle whose radius is √2
(C) straight line whose slope is –1 (D) circle whose radius is 1

Answers

Answered by IamIronMan0
5

Answer:

D

First simplfy your point so that we can get it in form of 【 x + i y 】

 \frac{a + i}{a - i}  \times  \frac{a  + i}{a + i}  \\  \\  =  \frac{(a + i) {}^{2} }{ {a}^{2} + 1 }  \\  \\  =  \frac{ {a}^{2} - 1 }{ {a}^{2}  + 1}   +  \frac{2a}{ {a}^{2} + 1 } i \\  \\  = x + iy \\   \implies\\ x =  \frac{ {a}^{2}  - 1}{ {a}^{2} + 1 }  \:  \: and \:  \: y =  \frac{2a}{ {a}^{2}  + 1}  \\  \\ to \:  \: get \:  \: locus \: eliminate \:  \: a \\  \\ let \:  \: a =  \tan( \alpha )  \\  \\ x =  \frac{ \tan {}^{2} ( \alpha ) - 1 }{ \tan {}^{2} ( \alpha )  + 1}  \\  =  \frac{ \tan {}^{2} ( \alpha ) - 1}{ \sec {}^{2} ( \alpha ) }  \\  \\  =  \sin {}^{2} ( \alpha )  -  \cos {}^{2} ( \alpha )   \\ =  -  \cos(2 \alpha )   \\ \\ and \\  \\ y =  \frac{2 \tan( \alpha ) }{ \tan {}^{2} ( \alpha )  + 1}  \\  \\  =  \frac{2 \tan( \alpha ) }{ \sec {}^{2} ( \alpha ) }  = 2 \sin( \alpha )  \cos( \alpha )  \\  \\  =  \sin(2 \alpha )  \\  \\ now \: square \: and \: add \: both \:  \\  \\  {x}^{2}  +  {y }^{2}  =( -  \cos(2 \alpha )  ) {}^{2} +   \sin {}^{2} (2 \alpha )  \\  \\   \huge \pink{{x}^{2}  +  {y}^{2}  = 1}

Similar questions