Math, asked by Anonymous, 9 months ago

All Trigonometric formulae. ​

Answers

Answered by ITzBrainlyGuy
5

Answer:

trigonometric formulas

 \sin( \theta)  =  \frac{opp}{hyp}

 \cos( \theta)  =  \frac{adj}{hyp}

 \tan( \theta)  =  \frac{opp}{adj} \\

 \csc( \theta)  =  \frac{hyp}{opp}

 \sec( \theta)  =  \frac{hyp}{adj}  \\

 \cot( \theta)  =  \frac{adj}{opp}

next,

trigonometric identities

 { \sin( \theta) }^{2}  +  { \cos( \theta) }^{2}  = 1

 { \sec( \theta) }^{2}  -  { \tan( \theta) }^{2}  = 1

 { \csc( \theta) }^{2}  -  { \cot( \theta) }^{2}  = 1

from the first identity

 { \sin( \theta) }^{2}  = 1 -  { \cos( \theta) }^{2}

 \sin( \theta)  =  \sqrt{1 -  { \cos( \theta) }^{2} }

 { \cos( \theta) }^{2}  = 1 -  { \sin( \theta) }^{2}

 \cos( \theta)  =  \sqrt{1 -  { \sin( \theta) }^{2} }

from the second identity

 { \sec( \theta) }^{2}  = 1 +  { \tan( \theta) }^{2}

 \sec( \theta) =  \sqrt{1 +  { \tan( \theta) }^{2} }

 { \tan( \theta) }^{2}  =  { \sec( \theta) }^{2}  - 1

 \tan( \theta )  =  \sqrt{ { \sec( \theta) }^{2} - 1 }

from the third identity

 { \csc( \theta) }^{2}  = 1 +  { \cot( \theta) }^{2}

 \csc( \theta)  =  \sqrt{ { \sec( \theta) }^{2} - 1 }

 { \cot( \theta) }^{2}  =  { \csc( \theta) }^{2}  - 1

 \cot( \theta)  =  \sqrt{ { \csc( \theta) }^{2} - 1 }

hope this helps you please mark it as brainliest

thanks

Answered by labanskumar
2

Total 4 pics.

HOPE IT MAY HELP U

FOLLOW ME ✌️❤️✌️❤️✌️❤️✌️

Attachments:
Similar questions