Math, asked by FuturePoet, 1 year ago

❤❤Aloha Friends ❤❤ Urgent question !!

Use LateX While Solving

♾♾♾♾♾♾♾♾♾♾♾♾♾♾♾

❤ Prove the indentity , Where the angles involved are acute angles for which of the following expressions are defined :-

\frac{CosA - SinA + 1 }{CosA + SinA -1 } = Cosec A + CotA


Using the identity
Cosec^{2} A = 1 + Cot^{2} A
♾♾♾♾♾♾♾♾♾♾♾♾♾♾♾

best ❣️ answer ❤️required

〰️〰️〰️〰️〰️〰️〰️〰️〰️〰️

⭕⭕⭕best of luck ⭕⭕⭕

〰️〰️〰️〰️〰️〰️〰️〰️〰️〰️

⬛@Brainlestuser , Brainly Team , Moderator


Anonymous: Hi

Answers

Answered by siddhartharao77
67

Given : \frac{cosA - sinA + 1}{cosA + sinA - 1}

Divide both the numerator and denominator by sinA, we get

= > \frac{\frac{cosA}{sinA} - \frac{sinA}{sinA} + \frac{1}{sinA}}{\frac{cosA}{sinA} + \frac{sinA}{sinA} - \frac{1}{sinA}}

= > \frac{cotA - 1 + cosecA}{cotA + 1 - cosecA}

= > \frac{cotA + cosecA - 1}{cotA - cosecA + 1}

Given cosec^2A = 1 + cot^2A. It can be written as cosec^2A - cot^2A = 1

\frac{cotA + cosecA - (cosec^2A - cot^2A)}{cotA - cosecA + 1}

We know that a^2 - b^2 = (a + b)(a - b)

= > \frac{cotA + cosecA - (cosecA + cotA)(cosecA - cotA)}{(cotA - cosecA + 1)}

= > \frac{(cosecA + cotA)[1 - cosecA + cotA]}{(1 - cosecA + cotA)}

= > cosecA + cotA


Note: It can be solved using conjugate method also. But we cannot use identity.



Hope it helps!


siddhartharao77: Thank you sis @Abhyajha
Anonymous: Friend Answer is amazing
siddhartharao77: Thanks friend!
Anonymous: Great ❤
ShuchiRecites: Great answer bhaiyu!
mahendrasinghsaharan: great answer
siddhartharao77: Thanks to all :-)
Answered by Anonymous
54
 <b> <I>

Hey there !!


 \boxed{ See \: the \: attachment \: for \: your \: answer. }



 \large \boxed{ \mathbb{TRIGONOMETRY.}}


 \huge \bf \underline{ \mathbb{LHS = RHS.}}


✔✔ Hence, it is proved ✅✅.

____________________________________



 \huge \boxed{ \mathbb{THANKS}}



 \huge \bf{ \# \mathbb{B}e \mathbb{B}rainly.}

Attachments:

Anonymous: nice answer✌✌
Anonymous: Cool ♥
ShuchiRecites: Sachin ji you rocked on!
mahendrasinghsaharan: great answer
Anonymous: thanks a lot to all !!
Similar questions