Math, asked by FuturePoet, 1 year ago

❤❤Aloha Friends ❤❤ Urgent questions !!

__________________________

✴ 4x^2 + 20 x + 9 = 0

===> Solve this by using Method of Completion of Square

_____________________________

✴ 3x^2 + 23x + 14 = 0

=====> Solve by using Formula Method
_______________________________

✴ 1/a + 1/b + 1/x = 1/a + b+ x

=====> Solve by Factorization
________________________________


*****If anybody spams then the answer will immediately delete

WARM Regards

Brainly Team

Answers

Answered by abhi569
35
▶ 4x² + 20x + 9 = 0



Divide by 4 on both sides ,



= > ( 4x² / 4 ) + ( 20x / 4 ) + ( 9 / 4 ) = 0


= > x² + 5x = - 9 / 4



Add ( 5 / 2 )² on both sides ,



= > x² + 5x + ( 5 / 2 )² = - 9 / 4 + ( 5 / 2 )²


  =  > (x +  \frac{5}{2}) {}^{2}  =  \frac{ - 9 + 25}{4}  \\  \\  \\  \\  =  >  {(x +  \frac{5}{2} )}^{2}  =  \frac{16}{4}  \\  \\  \\  \\  =  >  {(x +  \frac{5}{2} )}^{2}  = 4 \\  \\  \\  \\  =  > x +  \frac{5}{2} =    \pm2



= \: &gt; x =[  \:  \:  2 - \frac{5}{2 }  \:  \:  \: ] \:  \:  \:   or \:  \:  \:  [ \:  \:  - 2 - \frac{5}{2} \:  \: ] \\ \\ \\ \\ = \: &gt;x =    \:  \: -  \frac{1}{2}  \:  \:   \:  \:  \:  \:  or \:  \:  \:  \:  \:    \:  \:  \: -  \frac{ 9}{2} \:  \:  \: <br />







▶ 3x² + 23x + 14 = 0



On comparing the given equation with { ax² + bx + c = 0 } , we get

a = 3
b = 23
c = 14




✖ Discriminant = b² - 4ac

= > ( 23 )² - 4( 3 × 14 )


= > 529 - 168


= > 361





Applying Shri Dharacharya's Formula , { Formula Method } ,


x =  \frac{ - b \pm \sqrt{discriminant} }{2a}



Putting values,


 =  &gt; x =  \frac{ - (  \: 23 \: ) \pm \sqrt{361} }{2(3)}  \\  \\  \\  \\  =  &gt;  \boxed{x =  \frac{ - 23 + 19}{6} } \:  \:  \:  \:  \: or \:  \:  \:  \:  \: \boxed{ x =   \frac{ - 23 - 19}{6} } \\  \\  \\  \\  =  &gt;  \boxed{x =  -  \frac{42}{6} } \:  \:  \:  \:  \: or \:  \:  \:  \:  \:  \boxed{x =  -  \frac{4}{6} } \\  \\  \\  \\   =  &gt; \boxed{ x =  - 7 \:  \:  \:  \: or \:  \:  \:  \:  -  \frac{2}{3} }






▶ 1 / a + 1 / b + 1 / x = 1 / { a + b + x }



 =  &gt;  \frac{1}{a}  +  \frac{1}{b}   =  \frac{1}{a + b + x}  -  \frac{1}{x}  \\  \\  \\  \\  =  &gt;  \frac{b + a}{ab}  =  \frac{ \cancel{x }- a - b -  \cancel{x}}{(a + b + x)x}  \\  \\  \\ \\
  =  &gt; \frac{a + b}{ab}  =   \frac{ - a - b}{(a + b + x)x}  \\  \\  \\  \\  =  &gt;  \frac{ \cancel{(a + b)}}{ab}  =    \frac{ - \cancel{ (a + b)}}{(a  + b + x)x}  \\  \\  \\  \\  =  &gt;  \frac{1}{ab}  =  \frac{ - 1}{(a + b + x)x}




= > ax + bx + x² = - ab


= > x² + ax + bx + ab = 0


= > x( x + a ) + b( x + a ) = 0


= > ( x + a ) ( x + b ) = 0




 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:By  \:  \: Zero \:  \:  Product  \: \:  Rule  , <br />  \\  \\  \\  \\  \boxed{x =  - a \:  \:  \:  \:  \: o r \:  \:  \:  \: x =  - b}




BrainlyPrincess: (:
FuturePoet: Great
FuturePoet: Thank you so much for your indeed help :-(
FuturePoet: :-( **** :-)
abhi569: Welcome
abhi569: :-)
siddhartharao77: Good explanation!
abhi569: Thanks bro
BrainlyVirat: Great answer
abhi569: :-)
Answered by RabbitPanda
9

Heya mate.....refer attachment.....hope it helps u.....@skb♥️

Attachments:

siddhartharao77: Nice answer!
RabbitPanda: Thnku both✌
BrainlyVirat: Great answer:)
RabbitPanda: Ty
Similar questions