Math, asked by jayant2804nkbps, 11 months ago

alpha and ß are the zeroes of the equation 6x^2 +x-2=0 find alpha/ ß+ß/alpha​

Answers

Answered by Cynefin
4

 \huge{ \sf{ \green{ \mid{ \underline{ \overline{ \pink{work \: out...}}}}}}}

 \large{ \to \: given \: f(x) = 6 {x}^{2}  + x - 2 = 0 }\\  \large{if \:  \alpha  \: and \:  \beta  \: are \: zeroes \: of \: f(x) }\\  \large{ \red{ =  > sum \: of \: zeroes =   \frac{ - (coefficient \: of \: x)}{coefficient \: of \:  {x}^{2} } }} \\   \large{ \red{=  > product \: of \: zeroes =  \frac{constant}{coefficient \: of \:  {x}^{2} }}}  \\  \large{ \to \: then \:  \alpha  +  \beta  =  \frac{ - 1}{6} ...(1) }\\  \large{ \alpha  \beta  =  \frac{ - 2}{6} ....(2)} \\  \\ \large{ \green{  \to \: find.. \frac{ \alpha }{ \beta }  +  \frac{ \beta }{ \alpha }}}  \\  =  \large{ \frac{ { \alpha }^{2} +  { \beta }^{2}  }{ \alpha  \beta } } \\  \large{  =  \frac{( \alpha  +  \beta ) {}^{2}  - 2 \alpha  \beta }{ \alpha  \beta }  }\\   \large{=  \frac{( \frac{ - 1}{6}) {}^{2} - 2 \times  \frac{ - 2}{6}   }{ \frac{ - 2}{6} } } \\ \large{  =  \frac{( \frac{1}{36}  +  \frac{4}{6})  }{ \frac{ - 1}{3} }  }\\ \large{  =  \frac{ \frac{1 + 24}{36} }{ \frac{ - 1}{3} } } \\ \large{  =  \frac{ \frac{25}{36} }{ \frac{ - 1}{3} }  }\\   \large{=  \frac{25}{36}  \times  - 3 }\\  \large{ \green{ =  \frac{ - 25}{12} }} (\blue{answer...})

 \large{ \bold{ \orange{ running \: in \: a \: endless \: maze..}}}

Similar questions