Math, asked by Mmgg, 1 year ago

alpha and beta are the zeroes of the polynomial
2x square plus 3x + 4 find the value of 1/alpha square +1/beta square.

Answers

Answered by anmolve
35
iI hope it will help you
Attachments:
Answered by aquialaska
28

Answer:

Value of \frac{1}{{\alpha}^2}+\frac{1}{{\beta}^2}\:\:is\:\:\frac{-7}{16}

Step-by-step explanation:

Given Quadratic Polynomial, 2x² + 3x + 4

          α  and β are zeroes

To find: \frac{1}{{\alpha}^2}+\frac{1}{{\beta}^2}

we know that Sum of Zeroes = \frac{-coefficient\:of\:x}{coefficient\:of\:x^2}

And Product of Zeroes = \frac{Constant\:term}{coefficient\:of\:x^2}

\alpha+\beta=\frac{-3}{2}\:\:and\:\:\alpha\beta=\frac{4}{2}=2

we have a identity,

( a + b )² = a² + b² + 2ab

( α + β )² = α² + β² + 2αβ

α² + β² = ( α + β )² - 2αβ

{\alpha}^2+{\beta}^2=(\frac{-3}{2})^2-2\times2

{\alpha}^2+{\beta}^2=\frac{9}{4}-4

{\alpha}^2+{\beta}^2=\frac{9-16}{4}

{\alpha}^2+{\beta}^2=\frac{-7}{4}

Now,

Consider,

\frac{1}{{\alpha}^2}+\frac{1}{{\beta}^2}

\implies\frac{{\alpha}^2+{\beta}^2}{{\alpha}^2{\beta}^2}

\implies\frac{{\alpha}^2+{\beta}^2}{(\alpha\beta)^2}

\implies\frac{\frac{-7}{4}}{(2)^2}

\implies\frac{\frac{-7}{4}}{4}

\implies\frac{-7}{16}

Therefore, Value of \frac{1}{{\alpha}^2}+\frac{1}{{\beta}^2}\:\:is\:\:\frac{-7}{16}

Similar questions