Math, asked by Priscillaselvam4896, 10 months ago

Alpha+ beta =90 degree then prove sec square alpha + sec squre beta equal to sec squre alpha sec squre beta

Answers

Answered by waqarsd
2

Step-by-step explanation:

given \:   \alpha +  \beta =  {90}^{0}  \\  \\ sec {}^{2}  \alpha + sec {}^{2}  \beta \\  \\  =  \frac{1}{ {cos}^{2} \alpha }  +  \frac{1}{ {cos}^{2} \beta  }  \\  \\  =  \frac{ {cos}^{2} \alpha  +  {cos}^{2} \beta   }{ {cos}^{2}  \alpha  {cos}^{2}  \beta }  \\  \\  =  \frac{ {cos}^{2} \alpha  +  {cos}^{2} (90 {}^{0}  -  \alpha ) }{ {cos}^{2} \alpha  {cos}^{2}   \beta }  \\  \\  =  \frac{ {cos}^{2} \alpha  +  {sin}^{2} \alpha   }{ {cos}^{2}  \alpha  {cos}^{2}  \beta }  =  \frac{1}{ {cos}^{2}  \alpha  {cos}^{2}  \beta }  =  {sec}^{2}  \alpha  {sec}^{2}  \beta  \\  \\

formulae \\  \\ cosx \: secx \:  =  \: 1 \\  \\ cos ( {90}^{0} - x)  = sinx \\  \\  {cos}^{2} x +  {sin}^{2} x = 1

HOPE IT HELPS

Answered by Anonymous
0

Step-by-step explanation:

\begin{lgathered}given \: \alpha + \beta = {90}^{0} \\ \\ sec {}^{2} \alpha + sec {}^{2} \beta \\ \\ = \frac{1}{ {cos}^{2} \alpha } + \frac{1}{ {cos}^{2} \beta } \\ \\ = \frac{ {cos}^{2} \alpha + {cos}^{2} \beta }{ {cos}^{2} \alpha {cos}^{2} \beta } \\ \\ = \frac{ {cos}^{2} \alpha + {cos}^{2} (90 {}^{0} - \alpha ) }{ {cos}^{2} \alpha {cos}^{2} \beta } \\ \\ = \frac{ {cos}^{2} \alpha + {sin}^{2} \alpha }{ {cos}^{2} \alpha {cos}^{2} \beta } = \frac{1}{ {cos}^{2} \alpha {cos}^{2} \beta } = {sec}^{2} \alpha {sec}^{2} \beta \\ \\\end{lgathered}

Similar questions