Math, asked by yesuach3735, 2 months ago

Alpha,beta are the roots of of quadratic equation 9xsquare-10x+11=0.find the value of alpha square+beta square​

Answers

Answered by kpulkit15234
0

Answer:

11,-1

Step-by-step explanation:

Equation -> x^2-10x+11=0

Roots -> α , β

Sum of roots ->  α + β = -b/a

α + β = 10 [ -b/a=-(-10)/9 ]                     --------> eq 1

Product of roots -> α x β = c/a

α x β = 11/9  [c/a=11/9]                            

\alpha  = 11/9\beta                                                     --------> eq 2

putting value of α from eq 2 in eq 1

11/9\beta + \beta  = 10\\

11 + 9\beta ^2 = 90\beta

9\beta ^2 - 90\beta +11 =0\\

on solving the equation

β = 11,-1

Similar questions