Math, asked by lmnopq18, 9 months ago

alpha, beta, gamma are the roots of the equation x^3-10x^2+7x+8=0 then alpha +beta+gamma=? ​

Answers

Answered by Anonymous
1

To find:

\sf{The \ value \ of \ \alpha+\beta+\gamma}

Solution:

\sf{The \ given \ cubic \ equation \ is}

\sf{\longmapsto{x^{3}-10x^{2}+7x+8=0}}

\sf{Here, \ a=1, \ b=-10, \ c=7 \ and \ d=8}

Relationship between coefficients and roots.

\sf{\alpha+\beta+\gamma=-\dfrac{b}{a}}

\sf{\alpha\beta+\gamma\beta+\gamma\alpha=\dfrac{c}{a}}

\sf{\alpha\beta\gamma=-\dfrac{d}{a}}

__________________________________

\sf{we \ know,}

\sf{\alpha+\beta+\gamma=-\dfrac{b}{a}}

\sf{Substituting \ values \ of \ b \ and \ a, \ we \ get}

\sf{\alpha+\beta+\gamma=-\dfrac{-10}{1}}

\sf{\therefore{\alpha+\beta+\gamma=10}}

\sf\purple{\tt{\therefore{The \ value \ of \ \alpha+\beta+\gamma \ is \ 10.}}}

Similar questions