alpha + beta the whole cube
Answers
Answered by
49
is derived from ( a + b )^3 formula.
i.e. (a+b)^3 = a^3 + b^3 + 3ab( a + b )
a^3 + b^3 = (a+b)^3 - 3ab( a + b )
a^3 + b^3 = (a+b)( (a+b)^2 - 3ab)
a^3 + b^3 = (a+b)( a^2 + b^2 + 2ab - 3ab)
a^3 + b^3 = (a+b)( a^2 - ab + b^2 )
Done.
i.e. (a+b)^3 = a^3 + b^3 + 3ab( a + b )
a^3 + b^3 = (a+b)^3 - 3ab( a + b )
a^3 + b^3 = (a+b)( (a+b)^2 - 3ab)
a^3 + b^3 = (a+b)( a^2 + b^2 + 2ab - 3ab)
a^3 + b^3 = (a+b)( a^2 - ab + b^2 )
Done.
Answered by
24
Hello here is your answer by Sujeet yaduvanshi ☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝
Question:- (a+b)³
Solution:-a³ + ab(a + b) + b³
Note:- a is represents alpha
Question:- (a+b)³
Solution:-a³ + ab(a + b) + b³
Note:- a is represents alpha
Similar questions