Math, asked by Anjalithehappy, 1 year ago

Evaluate ³ + 1 /x^3 when = 2 + √3.


Anjalithehappy: sorry it is x^3

Answers

Answered by DeeptiMohanty
1
Hope this helps you....
Attachments:

Anjalithehappy: thank ypu very much
Anjalithehappy: you
DeeptiMohanty: ur welcome^_^
Answered by siddhartharao77
6

 Given : 2 + \sqrt{3}

 = > \frac{1}{x} = \frac{1}{2 + \sqrt{3}}

 = > \frac{1}{2 + \sqrt{3}} * \frac{2 - \sqrt{3}}{2 - \sqrt{3}}

 = > \frac{2 - \sqrt{3}}{(2)^2 - (\sqrt{3})^2}

 = > \frac{2 - \sqrt{3}}{4 - 3}

 = > 2 - \sqrt{3}

----------------------------------------------------------------------------------------------------------------

 = > x + \frac{1}{x} = 2 + \sqrt{3} + 2 - \sqrt{3}

 = > x + \frac{1}{x} = 4

---------------------------------------------------------------------------------------------------------------

Now,

We know that (x + 1/x)^3 = (x^3 + 1/x^3) + 3 * x * 1/x(x + 1/x).

 = > (4)^3 = (x^3 + \frac{1}{x^3}) + 3(4)

 = > 64 = x^3 + \frac{1}{x^3}  + 12

 = > 52 = x^3 + \frac{1}{x^3}


Therefore,

 = > \boxed{x^3 + \frac{1}{x^3} = 52}}


Hope this helps!

Similar questions