Physics, asked by skeerthisri, 9 months ago

an ac current I= Io sin wt produces certain heat H in a resistor R over a time T=2π/w write the value of Dc current that would produce the same heat in the same resistor in the same time​

Answers

Answered by nirman95
6

Given:

An ac current I= Io sin wt produces certain heat H in a resistor R over a time T=2π/w

To find:

Value of Dc current that would produce the same heat in the same resistor in the same time

Calculation:

Total heat by AC current:

 \rm{H} =  \displaystyle  \rm{\int {I}^{2} R \: dt}

 \displaystyle  =  > \rm{H = \int  { \{I_{0} \sin( \omega t)  \}}^{2} R \: dt}

 \displaystyle  =  > \rm{H = \int  { I_{0}}^{2} R \:  { \sin}^{2}( \omega t) dt}

 \displaystyle  =  > \rm{H =  ({ I_{0}}^{2} R) \int \:  { \sin}^{2}( \omega t) dt}

 \displaystyle  =  > \rm{H =   \dfrac{({ I_{0}}^{2} R)}{2} \int \:  \{1 -  \cos( 2\omega t)  \}dt}

 \displaystyle  =  > \rm{H =   \dfrac{({ I_{0}}^{2} R)}{2} \int_{0}^{ \frac{2\pi}{ \omega} } \:  \{1 -  \cos( 2\omega t)  \}dt}

 \displaystyle  =  > \rm{H =   \dfrac{({ I_{0}}^{2} R)}{2}  \times \{ \frac{2\pi}{ \omega}  -   \dfrac{\sin(4\pi)}{2 \omega}  \} }

 \displaystyle  =  > \rm{H =   \dfrac{({ I_{0}}^{2} R)}{2}  \times \{ \frac{2\pi}{ \omega}  -   0  \} }

 \displaystyle  =  > \rm{H =   \dfrac{({ I_{0}}^{2} R)}{2}  \times ( \frac{2\pi}{ \omega} ) }

 \displaystyle  =  > \rm{H =   \dfrac{({ I_{0}}^{2} R\pi)}{ \omega}  }

Let DC current be I ;

Now , heat by DC current:

 \displaystyle  =  > \rm{H =   I^{2} R \: t}

Since both currents are same:

 \therefore  \:  \rm{ \dfrac{({ I_{0}}^{2} R\pi)}{ \omega} =  {I}^{2} R t  }

 =  >  \:  \rm{ \dfrac{({ I_{0}}^{2} R\pi)}{ \omega} =  {I}^{2} R  \times ( \dfrac{2\pi}{ \omega} )  }

 \rm{ =  > {I}^{2}  =  \dfrac{ { I_{0} }^{2} }{2} }

 \rm{ =  > I  =  \dfrac{  I_{0}  }{ \sqrt{2} } }

So, final answer is:

 \boxed{ \bf{I  =  \dfrac{  I_{0}  }{ \sqrt{2} } } }

Similar questions