x³-3x²y+3xy²-2y³.Factorise
Answers
Answered by
20
Step-by-step explanation:
Now, x³ + 3x²y + 3xy² + 2y³
= ( x³ + 3x²y + 3xy² + y³ ) + y³
= ( x + y )³ + y³
= ( x + y + y ) { ( x + y )² - ( x + y ) y + y² }
= ( x + 2y ) ( x² + 2xy + y² - xy - y² + y² )
= ( x + 2y ) ( x² + xy + y² )
which is the required factorization
Algebraic Identities :
( a + b )³ = a³ + 3a²b + 3ab² + b³
a³ + b³ = ( a + b ) ( a² - ab + b² )
hope it helps
#MarkAsBrainliest
Answered by
4
Answer:
(x+y)³ = x³ + 3x²y + 3xy² + y³(x-y)³ = x³ - 3x²y + 3xy² - y³(y-x)³ = y³ - 3y²x + 3yx² -x³ (x+1)³ = x³ + 3x² + 3x + 1(x-1)³ = x³ - 3x² + 3x -1(y+1)³ = y³ +3y² + 3y +1(y-1)³ = y³ - 3y² + 3y -1
thanks you ..
Similar questions