Physics, asked by Khushi6966, 1 month ago

An Aluminium wire of length 2.0 m and cross-section area of 1.8 × 10^-6 m² has a resistance of 0.03 Ω. Find the resistivity of aluminium.​

Answers

Answered by ꜱɴᴏᴡyǫᴜᴇᴇɴ
3

Given :

  • Length,  \sf \ell = 2.0 m
  • Area of cross-section = 1.8 ×  \sf 10^{-6}m^2
  • Resistance, R = 0.03 Ω

To Find :

  • Resistivity of aluminium, ρ = ?

Solution :

As, we have :

  • Length,  \sf \ell = 2.0 m
  • Area of cross-section = 1.8 ×  \sf 10^{-6}m^2
  • Resistance, R = 0.03 Ω

And we have to find resistivity of aluminium (ρ) :

We know that :

 \large \blue{ \dag} \underline{ \boxed{  \pink{\bf R =  \dfrac{ \rho \ell}{A} }}}

By substituting values :

 \sf :  \implies 0.03   =  \dfrac{ \rho \times 2.0}{1.8 \times 10^{ - 6} }   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \sf :  \implies 0.03  \times 1.8 \times 10^{ - 6} =  \rho \times 2.0 \\ \sf :  \implies 0.054 \times 10^{ - 6} =  \rho \times 2.0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \sf :  \implies  \dfrac{ 0.054 \times 10^{ - 6}}{2.0} =  \rho  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\ \sf :  \implies   0.027 \times 10^{ - 6} =  \rho \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\ \sf :  \implies   2.7 \times 10^{ - 8} =  \rho \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \large \blue{ \dag} \underline{ \boxed{  \pink{\bf  \rho \:  = 2.7 \times 10^{ - 8}Ωm}}}

  \underline{\tt Hence,  \:  value \:  of  \: resistivity \:  of \:  aluminium \:  is  \:  \pink{27 \times 10^{ - 8}Ω m.}}

Answered by OoINTROVERToO
1

 \large \pmb{ \bf{GiVEN }} \\ \tt Length, \sf ℓ = 2.0 m \\ \tt Area \:  of \:  cross-section = 1.8 × \sf 10^{-6}m² \\   \tt \: Resistance, R = 0.03 Ω  \\  \\ \\ \large \pmb{ \bf{ To  \: FiND}}  \\  \tt \: Resistivity \:  o f  \: aluminium,  \:  ρ = ?  \\  \\   \\  \large \pmb{ \bf{SOLUTiON}}  \\  \tt \: We  \: know \:  that \\ \large \blue \leadsto \underline{ \boxed{ \blue{\bf R = \dfrac{ \rho \ell}{A} }}} \\  \cr \: By \:  substituting \:  values :  \\ \\ \begin{gathered} \sf : \mapsto 0.03 = \dfrac{ \rho \times 2.0}{1.8 \times 10^{ - 6} } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:  \\ \\ \sf : \mapsto 0.03 \times 1.8 \times 10^{ - 6} = \rho \times 2.0  \\ \\ \sf : \mapsto 0.054 \times 10^{ - 6} = \rho \times 2.0 \: \: \: \: \: \: \: \: \: \\ \\  \sf : \mapsto \dfrac{ 0.054 \times 10^{ - 6}}{2.0} = \rho \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\  \\ \sf : \mapsto 0.027 \times 10^{ - 6} = \rho \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\  \sf : \mapsto 2.7 \times 10^{ - 8} = \rho \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \end{gathered}  \\ \\  \large \blue{ \ddag}  \:  \: \underline{ \boxed{ \red{\bf \rho \: = 2.7 \times 10^{ - 8}Ωm}}} \:  \:  \blue{ \ddag} \\  \\  \small{\underline{\tt Hence, \: value \: of \: resistivity \: of \: aluminium \: is \: \pink{27 \times 10^{ - 8}Ω m.}} }

Similar questions