an ap has 27 terms the sum of the middle term and the two terms adjacent one each side of it is 177 if sum of the last term last three terms is 321 find
Answers
Answer:
hope it helps you to answer any questions
Step-by-step explanation:
Let the 1st term = x1
for a.p., constant term added = n
.. we can write equation
x2 = x1 + n
x3 = x1 + 2n
xn = x1 + (n-1)n
- (1)
There are total 27 terms
The middle term will be 14th term
.. As per condition (1)
x13 + x14 + x15 = 177
MEa (0) Q 32 32
substituting from equation 1 we get,
x13 = x1 + 12n
x14 = x1 + 13n
x15 = x1 + 14n
:: x13 + x14 + x15 = (x1+12n) + (x1+13n)
+ (x1+14n) = 177
· (2)
::3x1 + 39n = 177.. (2)
For condition 2, sum of last three
terms = 321
x25 + x26 +x27 = 321
MEg (0) Q 32 32
-(X1 + 24n) + (x1 + 25n) + (x1 + 26n) =
321
: 3x1 + 75n = 321
.. 3x1 = 321 - 75n..
(3)
substituting the value in equation 2,
we get
(321 - 75n) + 39n = 177
. 321 - 177 = 75n - 39n
:: 144 = 36n
.. n = 4. (4)
Substituting in eqn (3),
3x1 + 75x 4 = 321
:: 3x1 + 300 = 321
:: 3x1 = 21
.. x1
= 7 . (5)
1st 3 terms of a.p.
x1 = 7
x2 = x1 + n = 7 + 4 = 11
x3 = x2 + 2 = 11+ 4 = 15
: x1
= 7x2 = 11, x 3 = 15