Math, asked by nisha02345, 7 months ago

An army contingent of 616 members is to march behind an army band of 32 members in a parade. The two groups are to march in the same number of columns. What is the maximum number of columns in which they ​

Answers

Answered by kunjika158
12

HCF (616,32) is the maximum number of columns in which they can march.

Step 1: First find which integer is larger.

616>32

Step 2: Then apply the Euclid's division algorithm to 616 and 32 to obtain

616=32×19+8

Repeat the above step until you will get remainder as zero.

Step 3: Now consider the divisor 32 and the remainder 8, and apply the division lemma to get

32=8×4+0

Since the remainder is zero, we cannot proceed further.

Step 4: Hence the divisor at the last process is 8

So, the H.C.F. of 616 and 32 is 8.

Therefore, 8 is the maximum number of columns in which they can march.

Answered by Anonymous
4

1.015=1+5(0.01)+10(0.01)2 +10(0.01)3+5(0.01)4+(0.01)5

1.015=(1+0.01)5

1.015=1.0510100501

Attachments:
Similar questions