Physics, asked by ashutoshsinghevollov, 3 months ago

An electric dipole of dipole moment p consists of point charges +q and -q separated by a distance 2a apart. Deduce the expression for the electric field E due to the dipole at a distance x from the centre of the dipole on its axial line in terms of the dipole moment p. Hence show that in the limit
x >>a, E= 2p /(4πεοχ3)​

Answers

Answered by nirman95
7

Field intensity on axis of dipole :

 \sf E_{net} = E_{ (+ q)} - E_{( - q)}

 \sf \implies E_{net} =  \dfrac{kq}{ {(x  -  a)}^{2} }  -  \dfrac{kq}{ {(x + a)}^{2} }

 \sf \implies E_{net} =  kq \bigg \{ \dfrac{1 }{ {(x - a)}^{2} }  -  \dfrac{1}{(x + a)}  \bigg \}

 \sf \implies E_{net} =  kq \bigg \{ \dfrac{{(x + a)}^{2}  -  {(x - a)}^{2} }{ {({x}^{2}  -  {a}^{2} )}^{2}  }    \bigg \}

 \sf \implies E_{net} =  kq \bigg \{ \dfrac{4xa}{ {({x}^{2}  -  {a}^{2})}^{2}  }    \bigg \}

 \sf \implies E_{net} = \dfrac{2k(q \times 2a)x}{ {({x}^{2}  -  {a}^{2})}^{2}  }

 \boxed{ \sf \implies E_{net} = \dfrac{2kPx}{ {({x}^{2}  -  {a}^{2})}^{2}  }   }

Now, for x >>> a , we can say:

 \sf \implies E_{net} = \dfrac{2kPx}{  {x}^{4}  }

 \sf \implies E_{net} = \dfrac{2kP}{  {x}^{3}  }

 \sf \implies E_{net} = \dfrac{2P}{  4\pi  \epsilon_{0} {x}^{3}  }

 \boxed{ \sf \implies E_{net} = \dfrac{P}{  2\pi  \epsilon_{0} {x}^{3}  }   }

Hope It Helps.

Attachments:
Similar questions