Physics, asked by harshad4087, 8 months ago

An electron & a proton have their masses in the ratio 1:1840. What will be the ratio of their kinetic energy if they have equal momentum ?

Answers

Answered by VedankMishra
10

E =  \frac{1}{2} mv {}^{2}  \\

p = mv =  \sqrt{2mE} =  \sqrt{2mqv} \\

De Broglie wavelength associated with change particle

λ =  \frac{h}{p}  =  \frac{h}{\sqrt{2mE} }  =  \frac{h}{ \sqrt{mqv} }  \\

E =  \frac{1}{2} mv {}^{2}   = K.E.P \: is \: the \: momentum \: of \: change

So, λP= \frac{h}{\sqrt{2mpE} } \\

So, λo= \frac{h}{\sqrt{2moE} } \\

So,  \frac{λp}{λo}  =  \frac{ \sqrt{me} }{ \sqrt{mp} }  \\

 \sqrt{ \frac{me}{mp} }  \\

 =   \sqrt{ \frac{9.1 \times 10 {}^{ - 13} }{1.67 \times 10 {}^{ - 27} } }  \\

 \sqrt{ =5.449×10 {}^{−4} } \\ </p><p></p><p></p><p>

2.33 \times 10 {}^{ - 2}

=0.0233 \\

 =  \frac{1}{43}  \\

And the answer is 1:43

Answered by stunwolf
1

Mass of electron/ Mass of proton=1:1840

K.E. = p²/2m

K.E. of electron/ K.E. of proton= p²/2m₁ × p²/2m₂

cancels out as momentum of electron and proton are equal

K.E. of electron/ K.E. of proton= m₂/ m₁

K.E. of electron/ K.E. of proton= 1840/1

K.E. of electron: K.E. of proton= 1840:1

Similar questions