An electron and a proton, each have de Broglie wavelength of 1.00 nm.
(i) Find the ratio of their momenta. (ii) compare the kinetic energy of the
proton with that of the electron.
Answers
Type your question
student-name Kavya Anand asked in Physics
An electron and a photon each have a wavelength of 1.00 nm. Find
(a) their momenta,
(b) the energy of the photon, and
(c) the kinetic energy of electron.
Share 6 Follow 3
student-name Ajay Kumar Shukla answered this
4353 helpful votes in Physics, Class XI-Science
Wavelength of an electron
= 1 × 10−9 m
Planck’s constant, h = 6.63 × 10−34 Js
(a) The momentum of an elementary particle is given by de Broglie relation:
It is clear that momentum depends only on the wavelength of the particle. Since the wavelengths of an electron and a photon are equal, both have an equal momentum.
(b) The energy of a photon is given by the relation:
Where,
Speed of light, c = 3 × 108 m/s
Therefore, the energy of the photon is 1.243 keV.
(c) The kinetic energy (K) of an electron having momentum p,is given by the relation:
Where,
m = Mass of the electron = 9.1 × 10−31 kg
p = 6.63 × 10−25 kg m s−1
Hence, the kinetic energy of the electron is 1.51 eV.