Chemistry, asked by muhammedziyanu705, 1 year ago

An electron beam can undergo diffraction by crystals. Through what potential should a beam of electrons be accelerated so that its wavelength becomes equal to 1.54 Å.

Answers

Answered by phillipinestest
81

To determine: The potential required for a beam of electrons to be accelerated so that its wavelength becomes 1.54 \AA.

Given Data:  \lambda \quad =\quad 1.54\quad \times \quad { 10 }^{ -10 }

Constants: Planck's constant, h\quad =\quad 6.63\quad \times \quad { 10 }^{ -34 }\quad kg\sfrac { { m }^{ 2 } }{ s }

Charge of an electron, e\quad =\quad 1.602\quad \times \quad { 10 }^{ -19 }\quad C

Mass of an electron =\quad 9.1\quad \times \quad { 10 }^{ -31 }\quad kg

Formulas to be used:

1) Kinetic energy of an electron in terms of mass m and speed 'u' of the electron =\quad \frac { 1 }{ 2 } m{ u }^{ 2 }

2) Kinetic energy of an electron in terms of potential, V\quad =\quad e.V

3) Wavelength, \lambda \quad =\quad \frac { h }{ mu }

Calculation:

Step 1: Equating the formulas (1) and (2), and substituting u in terms of     using formula (3) we get

\frac { 1 }{ 2 } m{ u }^{ 2 } \quad =\quad e.V

\frac { 1 }{ 2 } m{ \left( \frac { h }{ m\lambda } \right) }^{ 2 }\quad =\quad e.V

\frac { 1 }{ 2 } \frac { { h }^{ 2 } }{ m{ \lambda }^{ 2 } } \quad =\quad e.V

V\quad =\quad \frac { 1\quad \times \quad \left( 6.63\quad \times \quad { 10 }^{ -34 } \right) }{ 2\quad \times \quad \left( 9.1\quad \times \quad { 10 }^{ -31 } \right) { \left( 1.54\quad \times \quad { 10 }^{ -10 } \right) }^{ 2 }\left( 1.602\quad \times \quad { 10 }^{ -19 } \right) } \quad =\quad 63.3\quad Volt

Answered by rizqinshaikh17
0

Answer:

Hope this will help you!!

Attachments:
Similar questions