Chemistry, asked by navy1752, 1 year ago

An element ( atomic mass =60 )having fcc crystal has a density of 6.23 g per cm3 . What is the edge length of unit cell

Answers

Answered by Anonymous
17
 \textsf{\large{\underline {Concept Used - Solid State }}} :

 \textsf{\large{\underline {Solution}}} :

Mass of the unit cell, M =  \mathsf{60 g}

Density of the unit cell, d =  \mathsf{6.23\:g\:{cm}^{-3}}

We know that,

 \boxed{\mathsf{Density\:=\:{\dfrac{Mass} {Volume}}}}

\mathsf{Density\:=\:{\dfrac{M*z} {N_A*V}}}

where,  \mathsf{M\:=\:Molar\:mass}

 \mathsf{z\:=\: Effective \:number \:of\: particles\: in\: a \:unit\: cell}

 \mathsf{N_A\:=\:Avagadro\:Number}

 \mathsf{V\:=\:Volume \:of\:Unit\:Cell}

So, Now,

For fcc unit cell,  \mathsf{z\:=\:4} ,

Putting values in the above formula,

 \mathsf{6.23\:=\:{\dfrac{60*4}{(\:6.022*{10}^{23}\:)(\:V\:)}}}

 \mathsf{V\:=\:{\dfrac{60*4}{(\:6.022*{10}^{23}\:)(\:6.23\:)}}}

 \mathsf{V\:=\:{\dfrac{240}{(\:6.022*{10}^{23}\:)(\:6.23\:)}}}

 \mathsf{V\:=\:{\dfrac{240}{(\:37.517*{10}^{23}\:)}}}

 \mathsf{V\:=\:6.397*{10}^{-23}{cm} ^{3}}

Since, Volume of a cubic cell, V =  \mathsf{{side}^{3}\:=\:{a} ^{3}}

➡️ Here, a = Side Length /Edge length of the unit cell .

 \mathsf{{a}^{3}\:=\:6.397*{10}^{-23}}

 \mathsf{{a}^{3}\:=\:63.97*{10}^{-24}}

 \boxed{\mathsf{a\:=\:3.99*{10}^{-8}\:cm}}

➡️  \textsf{Edge length of the unit cell} =  \mathsf{a\:{\approx{\:4*{10}^{-8}\:cm}}}
Attachments:

Grimmjow: Beautiful Answer!
Anonymous: :-)
sakshi7048: well explained...✌✌
Anonymous: Tysm..
Similar questions