An equilateral triangle has two vertices at the point 3,4 and -2,3 find the coordinates of the third vertex?
Answers
Answered by
326
let 3rd vertex of an equilatral triangle is (x, y)
we know,
all side of equilatral triangle are same
so,
(x-3)^2+(y-4)^2=(x+2)^2+(y-3)^2=(5)^2+(1)^2
now,
(x-3)^2+(y-4)^2=(x+2)^2+(y-3)^2
-6x-8y+9+16=4x-6y+4+9
10x+2y=12
5x+y=6 -----------------(1)
again ,
(x+2)^2+(y-3)^2=25+1
x^2+y^2+4x-6y=13--------------(2)
solve equation (1) and (2)
x= {1+root3}/2 and {1-root3 }/2
and y=6-5x
we know,
all side of equilatral triangle are same
so,
(x-3)^2+(y-4)^2=(x+2)^2+(y-3)^2=(5)^2+(1)^2
now,
(x-3)^2+(y-4)^2=(x+2)^2+(y-3)^2
-6x-8y+9+16=4x-6y+4+9
10x+2y=12
5x+y=6 -----------------(1)
again ,
(x+2)^2+(y-3)^2=25+1
x^2+y^2+4x-6y=13--------------(2)
solve equation (1) and (2)
x= {1+root3}/2 and {1-root3 }/2
and y=6-5x
1210:
Then y do u study maths
Answered by
133
Given two vertices of equilateral triangle are
A(3,4) & B(-2,3)
Let the third vertex of equilateral triangle be P(x,y)
Distance between points A & B
= √[(3+2)^2 + (4-3)^2
= √(25+1)
= √26
Distance between P & A = Distance between P & B = Distance between A & B
√[(x-3)^2 + (y-4)^2] = √[(x+2)^2 + (y-3)^2] = √26
squaring on both sides ;
(x-3)^2 + (y-4)^2 = (x+2)^2 + (y-3)^2 = 26
-------------------------------------
x^2+9-6x +y^2+16-8y = 26
x^2+y^2-6x-8y = 1
x^2 + y^2 = 6x+8y+1 -------------(1)
------------------------------------
26 = x^2+y^2+4x-6y+11
x^2+y^2+4x-6y = 15
x^2 + y^2 = -4x+6y+15 ----------(2)
-----------------------------------
x^2+9-6x+y^2+16-8y = x^2+y^2+4x-6y+11
10x+3y = 12 ----------------(3)
-----------------------------------
In equation (1) & (2) RHS is equal , therefore ;
6x+8y+1 = -4x+6y+15
10x+2y = 14 --------------(4)
____________________
Solving equation (3) & (4)
y = -2
x = 18
==============================
Hence the third vertex of the triangle is (-2,18)
A(3,4) & B(-2,3)
Let the third vertex of equilateral triangle be P(x,y)
Distance between points A & B
= √[(3+2)^2 + (4-3)^2
= √(25+1)
= √26
Distance between P & A = Distance between P & B = Distance between A & B
√[(x-3)^2 + (y-4)^2] = √[(x+2)^2 + (y-3)^2] = √26
squaring on both sides ;
(x-3)^2 + (y-4)^2 = (x+2)^2 + (y-3)^2 = 26
-------------------------------------
x^2+9-6x +y^2+16-8y = 26
x^2+y^2-6x-8y = 1
x^2 + y^2 = 6x+8y+1 -------------(1)
------------------------------------
26 = x^2+y^2+4x-6y+11
x^2+y^2+4x-6y = 15
x^2 + y^2 = -4x+6y+15 ----------(2)
-----------------------------------
x^2+9-6x+y^2+16-8y = x^2+y^2+4x-6y+11
10x+3y = 12 ----------------(3)
-----------------------------------
In equation (1) & (2) RHS is equal , therefore ;
6x+8y+1 = -4x+6y+15
10x+2y = 14 --------------(4)
____________________
Solving equation (3) & (4)
y = -2
x = 18
==============================
Hence the third vertex of the triangle is (-2,18)
Similar questions