Math, asked by sakshi8851, 1 year ago

An equilateral triangle has two vertices at the points (3,4) and (-2,3) find the coordinatea of the third vertex?

Answers

Answered by Anonymous
9

Step-by-step explanation:

Two vertices of an equilateral triangle are (3, 4) and (-2, 3)

Let the third vertex of the triangle be (x, y)

Distance between (3, 4) and (-2, 3)

=√[(-2-3)2 + (3-4)2]

= (-5)2 + (-1)2

⇒ 26

Distance between (3, 4) and (x, y)

= √[(x-3)2 + (y-4)2]

= [(x-3)2 + (y-4)2]

= [(x-3)2 + (y-4)2]

= x2 - 6x + 9 + y2 - 8y + 16  

= x2 - 6x + y2 - 8y + 25 ------------------------ (1)

Distance between (-2, 3) and (x, y)

= √[(x+2)2 + (y-3)2]

= [(x+2)2 + (y-3)2] = 26

= x2 +  4x + 4 + y2 - 6y + 9

= x2 + 4x + y2 - 6y + 13 -------------------- (2)

Equating the distances we get,

x2 - 6x + y2 - 8y + 25 = x2 + 4x + y2 - 6y + 13

10x + 2y - 12 = 0

5x + y - 6 = 0

y = (6 - 5x)

Substituting the value of y in equation (1) and equating it to 26.

x2 - 6x + y2 - 8y + 25 = 26

⇒ x2 - 6x + (6 - 5x)2 - 8(6 - 5x) + 25 = 26

⇒ x2 - 6x + 36 + 25x2 -  60x - 48 + 40x + 25 = 26

⇒ 26x2 - 26x - 13 = 0

⇒ 2x2 - 2x - 1 = 0

Solving the quadratic equation using the quadratic formula, [-b ± √(b2 - 4ac)]/2a.

x = [2 ± √(4+8)] / 4

x = [2 ± √(12)] / 4

x = [2 ± 2√(3)] / 4

x = [1 ± √(3)] / 2

y = (6 - 5x)

  = 6 - 5 [1 ± √(3)] / 2

  = [12 - 5 ± 5√(3)] / 2

  = [7 ± 5√(3)] / 2

Hence, the coordinates of the third vertex of the equilateral triangle are ([1 ± √(3)] / 2, [7 ± 5√(3)] / 2).

Similar questions