Math, asked by ashu20080212, 10 months ago

An exterior angle of a triangle is 105° and its its interior opposite angles are in the ratio of 3:4. Find the angles of the triangle

Answers

Answered by sushilsinghatapur
1

Answer:

45,60,75

Step-by-step explanation:

Answered by Brâiñlynêha
2

\huge\mathbb{\underline{\underline{SOLUTION:-}}}

\bold{Given}\begin{cases}\sf{Exterior\: angle\:of\: triangle}\\ \sf{\implies 105{}^{\circ}}\end{cases}

  • Exterior angle of a triangle is equal to sum of the two opposite interior angles of triangle

\sf\underline{\underline{\red{According\: to\: Question:-}}}

\sf Two\:interior\: angles\:in\:Ratio\\ \\ \sf\implies 3:4

  • let the interior angles be x

  • \sf so,\: it's \:3x {}^{\circ}\:and \:4x {}^{\circ}

\sf \implies 3x{}^{\circ}+4x{}^{\circ}=105{}^{\circ}\\ \\ \sf\implies 7x=105{}^{\circ}\\ \\ \sf\implies x=\cancel{\frac{105{}^{\circ}}{7}}=15{}^{\circ}\\ \\ \sf\longrightarrow The\:value\:of\:x=15{}^{\circ}

  • So interior angles are:-

  • \sf 3\times 15{}^{\circ}=45{}^{\circ}
  • \sf 4\times 15{}^{\circ}=60{}^{\circ}

\tt The\:two\: angles\:of\: triangle=45{}^{\circ}\:and\:60{}^{\circ}

  • Now we have to find the third angle of triangle.

  • We know that the sum of angles of triangle is\sf  180{}^{\circ}

So ,

  • Let the third angle of triangle be a

\sf 45{}^{\circ}+60{}^{\circ}+a=180{}^{\circ}\\ \\ \sf\implies 105{}^{\circ}+a=180{}^{\circ}\\ \\ \sf\implies a=180{}^{\circ}-105{}^{\circ}\\ \\ \sf\implies a=75{}^{\circ}

  • The value of a is \sf 75{}^{\circ}

  • So, a is the third angle of triangle

  • The third angle of triangle is

\sf\implies{75 {}^{\circ}}

\boxed{\underline{\mathfrak{\purple{Angles\:of \triangle=75{}^{\circ}\:60{}^{\circ}\:45{}^{\circ}}}}}

#BAL

#answerwithquality

Similar questions