An incomplete distribution is given as follows:
Variable:
0−10
10−20
20−30
30−40
40−50
50 − 60
60 − 70
Frequency:
10
20
?
40
?
25
15
You are given that the median value is 35 and the sum of all the frequencies is 170. Using the median formula, fill up the missing frequencies.
Answers
SOLUTION :
Let the missing frequency of the class 20 - 30 be f1 and that of class 40 - 50 be f2.
Given : n(Σfi) = 170 , Median = 35
From the table, Σfi = 10 + 20 + f1 + 40 + f2 + 25 + 15
170 = 110 + f1 + f2
f1 + f2 = 170 - 110
f1 + f2 = 60 …………….(1)
Here, n = 170
n/2 = 85
Given , Median = 35, which belongs to the class 30 - 40 . So the Median class is 30 - 40 .
Here, l = 30 , f = 40, c.f = (30 + f1) , h = 10
MEDIAN = l + [(n/2 - cf )/f ] ×h
35 = 30 + [(85 - (30 + f1 ))/40] × 10
35 - 30 = [(85 - 30 - f1 ))/40] × 10
5 = [(55 - f1)/40] × 10
5 = [(55 - f1)/4
5 × 4 = 55 - f1
20 = 55 - f1
f1 = 55 - 20
f1 = 35
Put the value of f1 in eq 1
f1 + f2 = 60
35 + f2 = 60
f2 = 60 - 35
f2 = 25
Hence, the missing frequencies be f1 = 35 and f2 = 25.
★★ MEDIAN = l + [(n/2 - cf )/f ] ×h
Where,
l = lower limit of the median class
n = number of observations
cf = cumulative frequency of class interval preceding the median class
f = frequency of median class
h = class size
HOPE THIS ANSWER WILL HELP YOU…
Please Refer the given attachment for the answer.
Thus,
Hope it helps.
________________________❤️