Physics, asked by harshuu94, 9 months ago

An infinite line charge produces a field of 9 x 10-4 NC-1 at a distance of 2 cm. Calculate the
charge density
1 Point
sono
- 10 cm​

Answers

Answered by BrainlyConqueror0901
6

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Charge\:Density=1\times 10^{-15}\:C\:m}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies Electric \: field = 9 \times  {10}^{ - 4}  \: NC^{ - 1}  \\  \\  \tt: \implies Distance(r) = 2 \: cm \\  \\  \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Charge \: Density( \lambda) = ?

• According to given question :

 \tt \circ \: r =  \frac{2}{100} = 0.02 \: m   \\  \\  \bold{As \: we \: know \: that} \\  \tt: \implies E =  \frac{2k \lambda}{r}  \\  \\ \tt \circ \: k = 9 \times  {10}^{9}   \\  \\ \tt: \implies 9 \times  {10}^{ - 4}   =  \frac{2 \times 9 \times 10^{9} \times  \lambda }{0.02 }  \\  \\ \tt: \implies  \frac{9 \times  {10}^{ - 4} \times 0.02 }{2 \times 9 \times 10^{9} }  =  \lambda \\  \\ \tt: \implies \lambda =  \frac{2 \times  {10}^{ - 4 - 2  - 9} }{2}  \\  \\   \green{\tt: \implies \lambda =1 \times  {10}^{ - 15}  \: C \:  {m}}

Answered by Thelncredible
3

Given ,

Electric filed (E) = 9 × 10^(-4) N/C

Distance (r) = 2 cm or 2 × 10^(-2) m

We know that , the electric field due to an infinitely long charged wire is given by

 \boxed{ \sf{E =  \frac{ \lambda}{2\pi e_{o}r  }  =  \frac{2 K\lambda}{r} }}

Where ,

K = 9 × 10^(9) Nm²/C²

Thus ,

 \sf \mapsto 9 \times  {(10)}^{ - 4}  =  \frac{2 \times 9 \times  {(10)}^{9}  \times   \lambda}{2 \times  {(10)}^{ - 2} }  \\  \\ \sf \mapsto \lambda = 1 \times  {(10)}^{ - 15}  \:  \: C/m

The linear charge density is 10^(-15) C/m

Similar questions