Math, asked by ramsha7178, 6 months ago

An integrating factor that makes the following differential equation y(x+y+1)dx + (x+2y)dy =0

Answers

Answered by Anonymous
1

Answer:

ANSWER

1) (x

2

+xy)dy–(x

2

+y

2

)dx

dx

dy

=

x

2

+xy

x

2

+y

2

=

1+(

x

y

)

1+(

x

y

)

2

u=

x

y

dx

dy

=

x

1

(

dx

dy

)−

x

2

y

=

x

1

dx

dy

−(

x

u

)

(

dx

du

+

x

u

)x=

dx

dy

(

dx

xdu

+4)=

1+4

1+4

2

dx

xdu

=

1+4

1+4

2

−u=

1+4

1+4

2

−4−4

2

dx

xdu

=(

1+4

1−4

)

⇒(

1−4

1+4

)du=

x

dx

1−4

−4−1

dx=−∫

x

dx

=∫

1−4

−4+1−1−1

du=−∫

x

dx

=∫(1−

1−4

2

)du=−∫

x

dx

u+2ln(1−y)=−ln(x)+c

⇒u+2ln(1−4)=−ln(x)+c

⇒u=

x

y

x

y

=2ln(1−

x

y

)=−ln(x)+c

⇒y+2xln(1−

x

y

)=−xln(x)+xc

Similar questions