Math, asked by praptimishra78, 4 months ago

an isosceles triangle has perimeter 30 cm and each of the equal sides is 12 cm. find the area of the triangle. ​

Answers

Answered by BlessedMess
30

First,let the third side be x.

It is given that the length of the equal sides us 12 cm and it's perimeter is 30 cm.

So,

30=12+12+x

⇒ 30 = 24 + x

⇒24  + x = 30

⇒  x= 30 - 24

⇒ x = 6

So,the length of the third side is 6 cm.

Thus,the semi perimeter of the isosceles triangle (s) = 30/2 cm =15 cm

By using Heron's Formula,

Area of the triangle,

 =  \sqrt{s(s - a)(s - b)(s - c)}

 =  \sqrt{15(15 - 12)(15 - 12)(15 - 6)}  \:  {cm}^{2}

 =  \sqrt{15 \times 3 \times 3 \times 9}  \:  {cm}^{2}

 = 9 \sqrt{15}  \:  {cm}^{2}

Answered by Berseria
19

Given :

  • Perimeter of Isosceles triangle = 30 cm

  • Equal sides = 12 cm

To Find :

  • Area of Triangle = ?

Solution :

Each equal sides of isosceles triangle is 12 cm.

Let's Find 3rd Side ;

Perimeter of Isosceles triangle = a + b + c

Here , 2a + b = 30

  • a = 12

  • b = ?

\sf \to \: 2a \:  + b \:  = 30 \\  \\ \sf \to \: 2 \times 12 + b = 30 \\  \\ \sf \to \: 24 + b = 30 \\  \\ \sf \to \: b = 30 - 24 \\  \\ \bf\to \: b = 6

So, Third side is 6 cm.

Let's Find Area ;

{\underline{\frak{ area \: of \: Isosceles \:triangle  =  \sqrt{s(s - a)(s - b)(s - c)}  }}}

  • S = semiperimetre

\sf\to \: semiperimetre \:  =  \frac{perimetre}{2}  \\  \\ \to \sf \:  \frac{30}{2}  = 15

Semiperimetre = 15 cm

\sf \to area = \large \: \sqrt{s(s - a)(s - a)(s - b)}

 \\  \\ \sf \to \:  \sqrt{15(15 - 12)(15 - 12)(15 - 6)}

 \\  \\ \sf\to \:  \sqrt{15(3)(3)(9)}

 \\  \\ \sf \to \:  \sqrt{15 \times 3 \times 3 \times 9}

 \\  \\ \sf \to \:  \sqrt{15 \times 9 \times 9}

 \\  \\ \bf \to \: 9 \sqrt{15}  \:  \: cm²

Area Of Triangle = 9√15 cm²

\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\qbezier(1, 0)(1,0)(3,3)\qbezier(5,0)(5,0)(3,3)\qbezier(5,0)(1,0)(1,0)\put(2.85,3.2){$\bf A\: \: \: 12 $}\put(0.5,-0.3){$\bf C\: \: \: 6$}\put(5.2,-0.3){$\bf B\: \: \: 12 $}\end{picture}

Similar questions